Insight into the Optimization of Implementation Time in Cob Construction: Field Test and Compressive Strength Versus Drying Kinetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils Particle Size and Geotechnical Characterization
2.2. Flax Straw
2.3. Sample Preparation
2.4. Water Content Control and Bulk Density
2.5. Compressive Strength
2.6. Clegg Impact Value
2.7. In Situ Implementation and Monitoring
3. Results and Discussion
3.1. Cob’s Compressive Strength and Density as Function of Water Content
3.2. Clegg Impact Value as Function of Water Content
3.3. In Situ Water Content and Compressive Strength Evolution
3.4. Clegg Impact Value and Compressive Strength
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- INSEE, Émissions de Gaz à Effet de Serre par Activité. 2022. Available online: https://www.insee.fr/fr/statistiques/2015759#tableau-figure1 (accessed on 30 January 2023).
- Watson, L.; McCabe, K. La técnica constructiva del cob. Pasado, presente y futuro. Inf. Constr. 2011, 63, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Laborel-Préneron, A.; Aubert, J.; Magniont, C.; Tribout, C.; Bertron, A. Plant aggregates and fibers in earth construction materials: A review. Constr. Build. Mater. 2016, 111, 719–734. [Google Scholar] [CrossRef]
- Soudani, L.; Woloszyn, M.; Fabbri, A.; Morel, J.-C.; Grillet, A.-C. Energy evaluation of rammed earth walls using long term in-situ measurements. Sol. Energy 2017, 141, 70–80. [Google Scholar] [CrossRef]
- Hamard, E.; Lemercier, B.; Cazacliu, B.; Razakamanantsoa, A.; Morel, J.-C. A new methodology to identify and quantify material resource at a large scale for earth construction—Application to cob in Brittany. Constr. Build. Mater. 2018, 170, 485–497. [Google Scholar] [CrossRef]
- Colinart, T.; Vinceslas, T.; Lenormand, H.; De Menibus, A.H.; Hamard, E.; Lecompte, T. Hygrothermal properties of light-earth building materials. J. Build. Eng. 2020, 29, 101134. [Google Scholar] [CrossRef]
- Goodhew, S.; Boutouil, M.; Streiff, F.; Le Guern, M.; Carfrae, J.; Fox, M. Improving the thermal performance of earthen walls to satisfy current building regulations. Energy Build. 2021, 240, 110873. [Google Scholar] [CrossRef]
- Alassaad, F.; Touati, K.; Levacher, D.; Sebaibi, N. Impact of phase change materials on lightened earth hygroscopic, thermal and mechanical properties. J. Build. Eng. 2021, 41, 102417. [Google Scholar] [CrossRef]
- Alassaad, F.; Touati, K.; Levacher, D.; Sebaibi, N. Effect of latent heat storage on thermal comfort and energy consumption in lightweight earth-based housings. Build. Environ. 2023, 229, 109915. [Google Scholar] [CrossRef]
- Alassaad, F.; Touati, K.; Levacher, D.; El Mendili, Y.; Sebaibi, N. Improvement of cob thermal inertia by latent heat storage and its implication on energy consumption. Constr. Build. Mater. 2022, 329, 127163. [Google Scholar] [CrossRef]
- Giuffrida, G.; Caponetto, R.; Nocera, F.; Cuomo, M. Prototyping of a Novel Rammed Earth Technology. Sustainability 2021, 13, 11948. [Google Scholar] [CrossRef]
- Hamard, E.; Cazacliu, B.; Razakamanantsoa, A.; Morel, J.-C. Cob, a vernacular earth construction process in the context of modern sustainable building. Build. Environ. 2016, 106, 103–119. [Google Scholar] [CrossRef]
- Hall, M.R.; Lindsay, R.; Krayenhoff, M. Modern Earth Buildings: Materials, Engineering, Construction and Applications; Woodhead Publishing: Sawston, UK, 2012. [Google Scholar]
- CobBauge Project, Soil and Fibre Characterisation, Mixes Choice and Mixes Characteristics, n.d. Available online: http://www.cobbauge.eu/wp-content/uploads/2019/05/Technical-report_ESITC_feb2019.pdf (accessed on 30 January 2023).
- Azil, A.; Le Guern, M.; Touati, K.; Sebaibi, N.; Boutouil, M.; Streiff, F.; Goodhew, S.; Gomina, M. Earth construction: Field variabilities and laboratory reproducibility. Constr. Build. Mater. 2022, 314, 125591. [Google Scholar] [CrossRef]
- NF P94-068; Soils: Investigation and Testing. Measuring of the Methylene Blue Adsorption Capacity of à Rocky Soil. Deter-Mination of the Methylene Blue of à Soil by Means of the Stain Test. GlobalSpec: Albany, NY, USA, 1998. Available online: https://sagaweb.afnor.org/fr-FR/sw/Consultation/Notice/1261353?directFromSearch=true (accessed on 11 April 2022).
- NF EN ISO 17892-12; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 12: Determination of Liquid and Plastic Limits. ISO: Geneva, Switzerland, 2018. Available online: https://sagaweb.afnor.org/fr-FR/sw/Consultation/Notice/1446382?directFromSearch=true (accessed on 11 April 2022).
- Touati, K.; Le Guern, M.; El Mendili, Y.; Azil, A.; Streiff, F.; Carfrae, J.; Fox, M.; Goodhew, S.; Boutouil, M. Earthen-based building: In-situ drying kinetics and shrinkage. Constr. Build. Mater. 2023, 369, 130544. [Google Scholar] [CrossRef]
- NF X31-501; Qualité des Sols-Méthodes Physiques-Mesure de la Masse Volumique Apparente d’un échantillon de sol non Remanié-Méthode du Cylindre. Afnor EDITIONS: Saint-Denis, France, 1992. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-x31501/qualite-des-sols-methodes-physiques-mesure-de-la-masse-volumique-apparente-/fa024711/355 (accessed on 11 April 2022).
- NF EN 13286-41; Mélanges Traités et Mélanges non Traités aux Liants Hydrauliques-Partie 41: Méthode d’essai pour la Détermination de la Résistance à la Compression des Mélanges Traités aux Liants Hydrauliques. Afnor EDITIONS: Saint-Denis, France, 2003. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-en-1328641/melanges-traites-et-melanges-non-traites-aux-liants-hydrauliques-partie-41-/fa101317/21720 (accessed on 11 April 2022).
- Vlček, J.; Valašková, V. Analysis of Applicability of Clegg Impact Soil Tester for Clayey Soils. MATEC Web Conf. 2018, 196, 02031. [Google Scholar] [CrossRef] [Green Version]
- Chabriac, P.-A.; Fabbri, A.; Morel, J.-C.; Laurent, J.-P.; Blanc-Gonnet, J. A Procedure to Measure the in-Situ Hygrothermal Behavior of Earth Walls. Materials 2014, 7, 3002–3020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldwell, T.G.; Bongiovanni, T.; Cosh, M.H.; Halley, C.; Young, M.H. Field and Laboratory Evaluation of the CS655 Soil Water Content Sensor. Vadose Zone J. 2018, 17, 1–16. [Google Scholar] [CrossRef] [Green Version]
- INSTRUCTION MANUAL, CS650 and CS655 Water Content Reectometers, Revision: 07/2021, (n.d.). Available online: https://s.campbellsci.com/documents/es/manuals/cs650.pdf (accessed on 11 April 2022).
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Andrade, F.; Al-Qureshi, H.; Hotza, D. Measuring the plasticity of clays: A review. Appl. Clay Sci. 2011, 51, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, B.; Ahmad, M.R. Characterization of a novel bio-insulation material for multilayer wall and research on hysteresis effect. Constr. Build. Mater. 2021, 290, 123162. [Google Scholar] [CrossRef]
- Meinhold, G. Rutile and its applications in earth sciences. Earth-Science Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
Soil | Liquid Limit [%] | Plasticity Index [%] | Methylene Blue Value [g/100 g] | USCS Classification |
---|---|---|---|---|
Soil 1 | 22.8 | 2.3 | 1.35 | Low plasticity silt (ML) |
Soil 2 | 28.5 | 4.2 | 2.31 | Silty sand with gravel (SM) |
Phases | V (%) | ⟨D⟩ (nm) |
---|---|---|
Quartz SiO2 | 54.8 (5) | 492 (10) |
Muscovite KAl2(AlSi3O10)(F,OH)2 | 26.2 (5) | 35 (5) |
Montmorillonite (Na,Ca)0.3 (Al,Mg)2Si4O10(OH)2 | 6.9 (2) | 111 (6) |
Albite NaAlSiO3 | 4.2 (2) | 43 (5) |
Kaolinite Al2Si2O5(OH)4 | 2.1 (3) | 78 (5) |
Goethite α-FeO(OH) | 2.0 (3) | 21 (1) |
Rutile TiO2 | 1.6 (3) | 92 (5) |
Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] | 1.1 (2) | 100 (5) |
Huntite Mg₃Ca(CO₃)₄ | 1.1 (2) | 123 (5) |
WC [wt.%] | VWC [m3·m−3] | Density [kg·m−3] | σε = 1% [MPa] | σmax [MPa] | CIV [-] |
---|---|---|---|---|---|
19 | 0.3672738 | 1933.02 ± 15.65 | 0.04 ± 0.03 | 0.08 ± 0.01 | 04.0 ± 0.0 |
17 | 0.3315272 | 1950.16 ± 09.67 | 0.06 ± 0.02 | 0.15 ± 0.01 | - |
15 | 0.2822145 | 1881.43 ± 35.80 | 0.12 ± 0.02 | 0.20 ± 0.00 | 08.0 ± 1.4 |
13 | 0.2425423 | 1865.71 ± 05.37 | 0.20 ± 0.02 | 0.29 ± 0.03 | - |
11 | 0.2002693 | 1820.63 ± 05.64 | 0.37 ± 0.03 | 0.42 ± 0.01 | 12.5 ± 0.7 |
9 | 0.1625859 | 1806.51 ± 02.25 | 0.58 ± 0.02 | 0.65 ± 0.02 | - |
5 | 0.0868015 | 1736.03 ± 10.24 | 1.19 ± 0.03 | 1.35 ± 0.03 | 20.0 ± 1.4 |
0 | 0 | 1656.98 ± 08.11 | 2.27 ± 0.30 | 2.60 ± 0.03 | 34.0 ± 1.4 |
Phases | V (%) | ⟨D⟩ (nm) |
---|---|---|
Quartz SiO2 | 61.2 (5) | 492 (10) |
Muscovite KAl2(AlSi3O10)(F,OH)2 | 26.0 (5) | 34 (5) |
Montmorillonite (Na,Ca)0.3 (Al,Mg)2Si4O10(OH)2 | 0.9 (2) | 67 (5) |
Albite NaAlSiO3 | 1.7 (2) | 46 (5) |
Kaolinite Al2Si2O5(OH)4 | 1.5 (3) | 78 (5) |
Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] | 2.1 (2) | 100 (5) |
Rutile TiO2 | 3.4 (3) | 92 (5) |
Carbonated calcium hemicarboaluminate Al Ca2C0.4O9.2 | 3.2 (1) | 61 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touati, K.; Al Sahmarany, B.; Le Guern, M.; El Mendili, Y.; Streiff, F.; Goodhew, S. Insight into the Optimization of Implementation Time in Cob Construction: Field Test and Compressive Strength Versus Drying Kinetics. Eng 2023, 4, 2075-2089. https://doi.org/10.3390/eng4030117
Touati K, Al Sahmarany B, Le Guern M, El Mendili Y, Streiff F, Goodhew S. Insight into the Optimization of Implementation Time in Cob Construction: Field Test and Compressive Strength Versus Drying Kinetics. Eng. 2023; 4(3):2075-2089. https://doi.org/10.3390/eng4030117
Chicago/Turabian StyleTouati, Karim, Baraa Al Sahmarany, Malo Le Guern, Yassine El Mendili, François Streiff, and Steve Goodhew. 2023. "Insight into the Optimization of Implementation Time in Cob Construction: Field Test and Compressive Strength Versus Drying Kinetics" Eng 4, no. 3: 2075-2089. https://doi.org/10.3390/eng4030117
APA StyleTouati, K., Al Sahmarany, B., Le Guern, M., El Mendili, Y., Streiff, F., & Goodhew, S. (2023). Insight into the Optimization of Implementation Time in Cob Construction: Field Test and Compressive Strength Versus Drying Kinetics. Eng, 4(3), 2075-2089. https://doi.org/10.3390/eng4030117