Evaluation of Physical Adsorption Properties of the Activated Carbon Layers Used in the Commercial Face Mask Inserts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of Physical Adsorption Characteristics of Activated Carbon Layers (ACL)
2.2.1. Surface Characteristics
2.2.2. Proximate Analysis
2.2.3. Scanning Electron Microscope (SEM) Analysis
3. Results and Discussion
3.1. Surface Characteristics
3.1.1. Adsorption Isotherms
3.1.2. Surface Area, Pore Area, and Pore Size
3.1.3. Pore Size Distribution
3.1.4. Proximate Analysis
3.1.5. Scanning Electron Microscopy (SEM) Analysis
4. Conclusions
Funding
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 21 May 2021).
- Coronavirus Disease (COVID-19) Advice for the Public: When and How to Use Masks. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/when-and-how-to-use-masks (accessed on 15 December 2020).
- Water, Sanitation, Hygiene, and Waste Management for SARS-CoV-2, the Virus That Causes COVID-19. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-IPC-WASH-2020.4 (accessed on 10 July 2020).
- Singhal, T. A review of Coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; You, Y.; Zhou, X.; Zong, Z.; Hauang, H.; Zhang, H.; Yong, X.; Cheng, Y.; Yang, L.; Guo, Q.; et al. Selection of homemade mask materials for preventing transmission of COVID-19: A laboratory study. PLoS ONE 2020, 15, e0240285. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Fan, X.; Yan, H. RetinaMask: A face mask detector. arXiv 2020, arXiv:2005.03950. [Google Scholar]
- Jotz, G.; Bittencourt, A. Why we need to use and which mask types are effective against the novel Coronavirus (COVID-19)? Int. Arch. Otorhinolaryngol. 2020, 24, e255–e257. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.; Hasan, A.; Ahmed, A.; Afroze, S.; Bakar, M.; Islam, S.; Azad, A. COVID-19 prevention: Role of activated carbon. J. Eng. Technol. Sci. 2021, 53, 1–12. [Google Scholar] [CrossRef]
- Hill, W.; Hull, M.; MacCuspie, R. Testing of commercial masks and respirators and cotton mask insert materials using SARS-CoV-2 virion-sized particulates: Comparison of ideal aerosol filtration efficiency versus fitted filtration efficiency. Nano Lett. 2020, 20, 7642–7647. [Google Scholar] [CrossRef]
- Deng, W.; Sun, Y.; Yao, X.; Subramanian, K.; Ling, C.; Wang, H.; Chopra, S.; Xu, B.; Wang, J.-X.; Chen, J.-F.; et al. Masks for COVID-19. Adv. Sci. 2021, 9, 2102189. [Google Scholar] [CrossRef]
- Wang, W.; Chen, T.; Li, Z.; Tan, Q.; Meng, Z.; Qiu, H.; Liu, X.; Zheng, J. Comparison of filtration efficiency and respiratory resistance of COVID-19. Am. J. Infect. Control 2022, 50, 516–524. [Google Scholar] [CrossRef]
- Reza, M.S.; Hasan, A.; Afroze, S.; Bakar, M.; Taweekun, J.; Azad, A.K. Analysis on preparation, application, and recycling of activated carbon to aid in COVID-19 protection. Int. J. Integr. Eng. 2020, 12, 233–244. [Google Scholar] [CrossRef]
- Bałazy, A.; Toivola, M.; Adhikari, A.; Sivasubramani, S.; Reponen, T.; Grinshpun, S. Do N95 respirators provide 95% protection level? Am. J. Infect. Control 2006, 34, 51–57. [Google Scholar] [CrossRef]
- Sim, K.M.; Kim, K.; Hwang, G.; Seo, S.; Bae, G.-N.; Jung, J.H. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles. Sci. Total Environ. 2014, 493, 291–297. [Google Scholar] [CrossRef]
- Dizbay-Onat, M.; Vaidya, U.; Lungu, C. Preperation of industrial sisal fiber waste derived activated carbon by chemical activation and effects of carbonization parameters on surface characteristics. Ind. Crops Prod. 2017, 95, 583–590. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, Y.; Kim, K. Performance of activated carbon-impregnated cellulose filters for indoor VOCs and dust control. Int. J. Environ. Sci. Technol. 2016, 13, 2189–2198. [Google Scholar] [CrossRef]
- Activated Carbon Face. Available online: https://healingvip.com/product/n95-activated-carbon-face-mask (accessed on 15 May 2020).
- Matsushita, T.; Suzuki, H.; Shirasaki, N.; Matsui, Y.; Ohno, K. Adsorptive virus removal with super-powdered activated carbon. Sep. Purif. Technol. 2013, 107, 79–84. [Google Scholar] [CrossRef]
- Tang, C. Challenges and opportunities in the post COVID-19 world. Environ. Geotech. 2020, 8, 172–192. [Google Scholar] [CrossRef]
- Li, W.; Yang, K.; Zhang, L.; Guo, S.; Xia, H. Effects of carbonization temperatures on charateristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind. Crops Prod. 2008, 28, 190–198. [Google Scholar] [CrossRef]
- Tay, M.; Poh, C.; Rénia, L.; MacAry, P.; Ng, L. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Serafin, J.; Sreńscek-Nazzal, J.; Kamińska, A.; Paszkiewicz, O.; Michalkiewicz, B. Management of surgical mask waste to activated carbons for CO2 capture. J. CO2 Util. 2022, 59, 101970. [Google Scholar] [CrossRef]
- Ng, C.; Wong, L.; Bashir, M.; Ng, S. Development of hybrid polymeric polyerthersulfone (PES) membrane incorporated with powdered activated carbon (PAC) for palm oil mill effluent (POME) treatment. Int. J. Integr. Eng. 2018, 10, 137–141. [Google Scholar] [CrossRef]
- Bansal, R.; Goyal, M. Activated Carbon Adsorption; Taylor and Francis Group: Abingdon, UK, 2005. [Google Scholar]
- Deshmukh, N. Comparison of Adsorption Capacities of Nanoadsorbents wih Conventional Activated Carbon for Volatile Organic Compounds. Master’s Thesis, The University of Texas at Arlington, Ann Arbor, MI, USA, 2005. [Google Scholar]
- Balanay, J. Adsorption Characteristics of Activated Carbon Fibers (ACFs) for Toluene. Ph.D. Thesis, The University of Alabama at Birmingham, Ann Arbor, MI, USA, 2011. [Google Scholar]
- Carrott, P.; Roberts, R.; Sing, K. Standard nitrogen adsorption data for nonporous carbons. Carbon 1987, 25, 769–770. [Google Scholar] [CrossRef]
- Mikhail, R.S.; Brunauer, S.; Bodor, E.E. Investigations of a complete pore structure analysis of micropore. J. Colloid Interface Sci. 1968, 26, 45–53. [Google Scholar] [CrossRef]
- Harkins, W.; Jura, G. An adsorption method for determination of the area of a solid without the assumption of a molecular area and the area occupied by nitrogen molecules on the surfaces of solids. J. Chem. Phys. 1943, 11, 431. [Google Scholar] [CrossRef]
- Aranovich, G.; Donohue, M. Analysis of adsorption isotherms: Latis theory predictions, classification of isotherms for gas-solid equilibria, and similarities in gas and liquid adsorption behaivour. J. Colloid Interface Sci. 1998, 200, 273–290. [Google Scholar] [CrossRef]
- Dinesh, S. Development and Characterization of Pellet Activated Carbon from New Precursor; IB.Eng Project; National Institute of Technology: Rourkela, India, 2011. [Google Scholar]
- Goswami, D. The CRC Handbook of Mechanical Engineering; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Silgado, K.; Marrugo, G.; Puello, J. Adsorption of Chromium (VI) by activated carbon produced from oil palm. Endocarp Chem. Eng. Trans. 2014, 37, 721–726. [Google Scholar]
- Baseri, J.P.P.; Sivakumar, P. Preparation and characterization of activated carbon from thevetia peruviana for the removal of dyes from textile waste water. Adv. Appl. Sci. Res. 2012, 3, 377–383. [Google Scholar]
- ASTM D2867-14; Standard Test Methods for Moisture in Activated Carbon. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D2866-11; Standard Test Method for Total Ash Content of Activated Carbon. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM D5832-08; Standard Test Method for Volatile Matter Content of Activated Carbon Samples. ASTM International: West Conshohocken, PA, USA, 2008.
- XWang; Li, D.; Li, W.; Peng, J.; Xia, H.; Zhang, L.; Guo, S.; Guo, C. Optimization of mesoporous activated carbon from coconut shells by chemical activation with phosphoric acid. Bioresources 2013, 8, 6184–6195. [Google Scholar]
- Hu, Z.; Srinivasan, M.; Ni, Y. Preparation of mesoporous high-surface-area activated carbon. Adv. Mater. 2000, 12, 62–65. [Google Scholar] [CrossRef]
- Georgin, J.; Franco, D.; Netto, M.; Manzar, M.; Meili, M.; Piccilli, D.; Silva, L. Adsorption of the first-line Covid treatment analgesic onto activated carbon from residual pods of erythrina ppeciosa. Environ. Manag. 2022, 1–14. [Google Scholar] [CrossRef]
- Senthilkumar, T.; Raghuraman, R.; Miranda, L. Parameter optimization of activated carbon production from Agave Sisalana and Punica Granatum peel: Adsorbents for C.I. reactive orange 4 removal from aqueous solution. Clean–Soil Air Water 2013, 41, 797–807. [Google Scholar] [CrossRef]
- Dizbay-Onat, M.; Vaidya, U.K.; Balanay, J.A.G.; Lungu, C.T. Preparation and characterization of flax, hemp, and sisal fiber-derived mesoporous activated carbon adsorbents. Adsorpt. Sci. Technol. 2018, 36, 441–457. [Google Scholar] [CrossRef]
- Gas Adsorption for Surface and Pore Size Analysis, Anton Paar. Available online: https://wiki.anton-paar.com/en/gas-adsorption-for-surface-area-and-pore-size-analysis/ (accessed on 15 May 2021).
- Canh, V.; Tabata, S.; Yamanoi, S.; Onaka, Y.; Yokoi, T.; Furumai, H.; Katayama, H. Evaluation of porous carbon adsorbents made from rice Husks for virus removal in water. Water 2021, 13, 1280. [Google Scholar] [CrossRef]
- Ilomuanya, M.; Nashiru, B.; Ifudu, N.; Igwilo, C. Effect of pore size and morphology of activated charcoal prepared from midribs of Elaeis guineensis on adsorption of poisons using metronidazole and Escherichia coli O157: H7 as a case study. J. Microsc. Ultrastruct. 2017, 5, 32–38. [Google Scholar] [CrossRef]
- Sudaryanto, Y.; Hartono, S.; Irawaty, W.; Hindarso, H.; Ismadji, S. High surface area activated carbon prepared from cassava peel by chemical activation. Bioresour. Technol. 2005, 97, 734–739. [Google Scholar] [CrossRef]
- Jabit, N.B. The Production and Characterization of Activated Carbon Using Local Agricultural Waste through Chemical Activation Process. Master’s Thesis, School of Material and Mineral Engineering, Universiti Sains Malaysia, Penang, Malaysia, 2017. [Google Scholar]
- Devi, B.; Jahagirdar, A.; Ahmed, M. Adsorption of chromium on activated carbon prepared from coconut shell. Int. J. Eng. Res. Appl. 2012, 2, 364–370. [Google Scholar]
- Hanum, F.; Bani, O.; Wirani, L. Characterization of activated carbon from rice husk by HCl activation and its application for Lead (Pb) removal in car battery wastewater. In Proceedings of the 1st Annual Applied Science and Engineering Conference, Bandung, Indonesia, 24 August 2017; Volume 180. [Google Scholar]
- Lua, A.; Yang, T. Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. J. Colloid Interface Sci. 2005, 290, 505–513. [Google Scholar] [CrossRef]
- Nam, J.Y.; Lee, T.R.; Tokmurzin, D.; Park, S.J.; Ra, H.W.; Yoon, S.J.; Mun, T.-Y.; Yoon, S.M.; Moon, J.H.; Lee, J.G.; et al. Hydrogen-rich gas production from disposable COVID-19 mask by steam gasification. Fuel 2023, 331, 125720. [Google Scholar] [CrossRef]
- Cuhadar, C. Production and Characterization Activated Carbon from Hazelnut Shell and Hazelnut Husk. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2005. [Google Scholar]
- Avval, Y.F.; Pour, G.; Aram, M.M. Fabrication of high efficiency coronavirus filter using activated carbon nanoparticles. Int. Nano Lett. 2022, 12, 421–426. [Google Scholar] [CrossRef]
- Ibrahim, W.; Hassan, A.; Azab, Y. Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egypt. J. Basic Appl. Sci. 2016, 3, 241–249. [Google Scholar] [CrossRef]
- Nacke, H.; Gonçalves, A.C.; Coelho, G.F.; Schwantes, D.; Campagnolo, M.A.; Leismann, E.A.V.; Junior, C.; Miola, A.J. Removal of Cd (II) from water using the waste of jatropha fruit (Jatropha curcas L.). Appl. Water Sci. 2016, 7, 3207–3222. [Google Scholar] [CrossRef] [Green Version]
Parameters | ACL1 | ACL2 | ACL3 | ACL4 |
---|---|---|---|---|
BET surface area (m2/g) | 2.43 ± 0.2 | 2.64 ± 0.1 | 33.27 ± 0.3 | 1.91 ± 0.1 |
Micropore area (m2/g) | 1.14 ± 0.2 | 1.21 ± 0.4 | 21.72 ± 0.5 | 0.9 ± 0.3 |
Micropore area percentage (%) | 47 | 46 | 65 | 46 |
Pore size (nm) | 1.94 ± 0.3 | 1.95 ± 0.3 | 1.88 ± 0.1 | 2.1 ± 0.5 |
Samples | Proximate Analysis (wt. %) | |||
---|---|---|---|---|
Moisture | Ash | Volatile | Fixed Carbon | |
ACL1 | 3.7 | 4.5 | 72.9 | 18.9 |
ACL2 | 3.1 | 4.1 | 66.4 | 26.4 |
ACL3 | 2.0 | 4.0 | 62.7 | 31.3 |
ACL4 | 3.6 | 5.7 | 71.2 | 19.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dizbay-Onat, M. Evaluation of Physical Adsorption Properties of the Activated Carbon Layers Used in the Commercial Face Mask Inserts. Eng 2023, 4, 434-443. https://doi.org/10.3390/eng4010026
Dizbay-Onat M. Evaluation of Physical Adsorption Properties of the Activated Carbon Layers Used in the Commercial Face Mask Inserts. Eng. 2023; 4(1):434-443. https://doi.org/10.3390/eng4010026
Chicago/Turabian StyleDizbay-Onat, Melike. 2023. "Evaluation of Physical Adsorption Properties of the Activated Carbon Layers Used in the Commercial Face Mask Inserts" Eng 4, no. 1: 434-443. https://doi.org/10.3390/eng4010026
APA StyleDizbay-Onat, M. (2023). Evaluation of Physical Adsorption Properties of the Activated Carbon Layers Used in the Commercial Face Mask Inserts. Eng, 4(1), 434-443. https://doi.org/10.3390/eng4010026