Geomechanical Feasibility Analysis of Salt Cavern Gas Storage Construction in Sanshui Basin, Guangdong Province
Abstract
:1. Introduction
2. Experiment Analysis and Discussion
2.1. Experiment Method
2.2. Analysis of Experimental Data
2.2.1. Tension Tests
2.2.2. Uniaxial/Triaxial Test at Room Temperature
2.2.3. High Temperature Triaxial Test
2.2.4. Creep Test
2.3. Result Analysis and Dicussion
2.3.1. Strength Model Parameters of Salt Rock
2.3.2. Creep Model Parameters of Salt Rock
3. Mechanical Stability Evaluation
3.1. Geomodel of Salt Cavern Gas Storage
3.2. Injection and Production Pressure Scheme
3.3. Stability Analysis
3.3.1. Stability Evaluation Criterion
3.3.2. Single Cavity Stability Analysis
3.3.3. Stability Analysis of Two Caverns
4. Conclusions
- The salt rocks in Sanshui Basin generally contain impurities. Both tensile test methods show that the tensile strength of the salt rock is low, less than 2 MPa.
- Under uniaxial compression, the circumferential tensile stress of the core is greater than its own tensile strength. The failure mode of salt rock presents as radial tensile failure and axial splitting failures. However, under triaxial compression, the salt rock shows a radial expansion state without obvious shear splitting. The confining pressure significantly improves the compressive strength of salt rock by limiting its radial deformation.
- The mechanical properties of salt rock are slightly influenced by temperature. With the increase of temperature, the peak strength and elastic modulus of salt rock decrease, and axial deformation at peak failure also reduce. Under the confining pressure of 30 MPa, the strength of salt rock decreases by 4.5% at the temperature of 60 °C compared with that at room temperature.
- Whether under uniaxial or triaxial compression condition, the salt rock after creep test has no obvious collapse failure. With the increase of axial load, the accelerated creep of salt rock only occurs under uniaxial compression operation, indicating that the confining pressure has a certain inhibition effect on the creep of salt rock. The greater the deviatoric stress, the greater the creep rate of salt rock, which conforms to the power exponent relationship. An operating temperature of 60 °C has no obvious influence on the creep rate of the salt rock. On the whole, the salt rock of salt bearing strata in Sanshui Basin, Guangdong Province, shows good mechanical properties.
- Under the operating pressure of 10–23 MPa, the roof settlement displacement and the volume convergence rate of the cavity are small. Moreover, the plastic area between two caverns is unconnected, and the overall stability of the salt cavity is good. Combined with the results of mechanical experiments and a stability analysis, the salt formation of Sanshui Basin in Guangdong Province has a good geomechanical condition, and it is suitable for the construction of underground salt cavern gas storage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, G.; Zhang, B.; Yang, C.; Xie, P.; Tian, G. The Creep Deformation Rule of Gas Storage Salt Cavern. Nat. Gas Ind. 2007, 27, 94–96. [Google Scholar]
- Crotogino, F.; Schneider, G.-S.; Evans, D.J. Renewable energy storage in geological formations. Proc. Inst. Mech. Eng. Part A J. Power Energy 2017, 232, 100–114. [Google Scholar] [CrossRef]
- Ran, L.N.; Zheng, D.W.; Han, B.J.; Wang, Y.; Kou, Y.X. Overview and Development of Energy Storage Using Salt Caverns in the World. In Proceedings of the 2013 National Natural Gas Academic Annual Conference, Kunming, Yunnan, China, 14–15 August 2013; pp. 440–445. [Google Scholar]
- Zheng, Y.L.; Zhao, Y.J. General Situation of Salt Cavern Gas Storage Worldwide. Oil Gas Storage Transp. 2010, 29, 652–655. [Google Scholar]
- Li, N.N.; Zhao, Y.Q.; Wang, T.T.; Yang, C.H. Trends Observation: Strategy and Development of International Salt Cavern Energy Storage Research. Bull. Chin. Acad. Sci. 2021, 36, 1248–1252. [Google Scholar]
- Khan, S.A.; Igoshin, A.I.; Sokhranskiy, V.B. Some Technological Aspect of Compressed Helium Storage in Salt Caverns. In Proceedings of the SMRI Spring 2011 Technical Conference, Galveston, TX, USA, 18–19 April 2011. [Google Scholar]
- IEA U.S. Underground Natural Gas Storage Capacity 2020 [EB/OL]. Available online: https://www.eia.gov/dnav/ng/ng_stor_cap_dcu_nus_a.htm (accessed on 25 December 2020).
- Zhang, B.; Lv, B.L.; Wu, Y.H.; Cui, L.H.; Zhou, S.Q. Development and Trend of Salt-Cavern Gas Storage in Domestic and Abroad. China Well Rock Salt 2021, 52, 21–24. [Google Scholar]
- Sedaee, B.; Mohammadi, M.; Esfahanizadeh, L.; Fathi, Y. Comprehensive modeling and developing a software for salt cavern underground gas storage. J. Energy Storage 2019, 25, 100876. [Google Scholar] [CrossRef]
- Moghadam, S.N.; Nazokkar, K.; Chalaturnyk, R.J.; Mirzabozorg, H. Parametric assessment of salt cavern performance using a creep model describing dilatancy and failure. Int. J. Rock Mech. Min. Sci. 2015, 79, 250–267. [Google Scholar] [CrossRef]
- Stern, N.; Xie, C. China’s new growth story: Linking the 14th Five-Year Plan with the 2060 carbon neutrality pledge. J. Chin. Econ. Bus. Stud. 2022, 2022, 1–21. [Google Scholar] [CrossRef]
- Bruno, M.S.; Durseault, M.B. Geomechanical Analysis of Pressure Limits for Thin Bedded Salt Caverns. In Proceedings of the SMRI Spring Technical Meeting, Banff, AB, Canada, 29–30 April 2002. [Google Scholar]
- Bruno, M.S. Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns: Final Report; Terralog Technologies: Arcadia, CA, USA, 2005. [Google Scholar]
- Bruno, M.; Dorfmann, L.; Han, G.; Lao, K.; Young, J. 3D geomechanical analysis of multiple caverns in bedded salt. In Proceedings of the SMRI Fall Technical Meeting, Nancy, France, 1–5 October 2005. [Google Scholar]
- B’Erest, P.; Brouard, B. Safety of salt caverns used for underground gas storage blow out; mechanical instability; seepage; cavern abandonment. Oil Gas Sci. Technol. 2003, 58, 361–384. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Yang, C.; Li, Y.; Guo, E.; Liu, J. Experimental and theoretical research on yield and failure characteristics of salt rock. Chin. J. Rock Mech. Eng. 2012, 31, 3747–3756. [Google Scholar]
- Liu, X.R.; Guo, J.Q.; Wang, J.B.; Li, P.; Zhang, Q.Q. Investigation on mechanical properties and failure criterion of salt rock based on energy principles. Rock Soil Mech. 2013, 34, 305–310, 315. [Google Scholar]
- Alkan, H.; Cinar, Y.; Pusch, G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. J. Rock Mech. Min. Sci. 2007, 44, 108–119. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, Y.; Wu, W.; Chen, F. Constitutive relationship of deep salt rock and its application to petroleum drilling engineering. Chin. J. Rock Mech. Eng. 2003, 22, 1678–1682. [Google Scholar]
- Li, Y.; Jiang, W.; Liu, J.; Chen, J.; Yang, C. Direct shear tests for layered salt rocks of Yunying salt mine in Hubei province. Chin. J. Rock Mech. Eng. 2007, 26, 1767–1772. [Google Scholar]
- Mansouri, H.; Ajalloeian, R. Mechanical behavior of salt rock under uniaxial compression and creep tests. Int. J. Rock Mech. Min. Sci. 2018, 110, 19–27. [Google Scholar] [CrossRef]
- Wanyan, Q.Q.; Wu, J.P.; Wang, Z.Y.; Zheng, Y.L. Experimental study on creep mechanical behaviors of salt rock in gas storage. In Proceedings of the Advances in Rheology—The 11th National Academic Conference on Rheology, Langfang, China, 17–18 October 2012; pp. 281–285. [Google Scholar]
- Liu, J. Experimental Investigation and Theoretic Analysis on the Mechanical Properties of Layered Salt Rock; Institute of rock and soil mechanics, Graduate University of Chinese Academy of Sciences: Wuhan, China, 2006. [Google Scholar]
- Jiang, D.; Ren, T.; Chen, J.; Ren, S.; Yang, C. Experimental study of mechanical characteristics of molded salt rock with weak interlayer. Chin. J. Rock Mech. Eng. 2012, 31, 1797–1803. [Google Scholar]
- Wang, A.M.; Li, X.G.; Yang, C.H.; Huang, Z.Q. Study of interaction between creep deformation of bedded salt rock. Rock Soil Mech. 2010, 31, 3964–3970. [Google Scholar]
- Gao, X.P.; Yang, C.H.; Wu, W.; Liu, J. Experimental studies on temperature effect of mechanical properties of salt rock. Rock Soil Mech. 2005, 26, 84–87. [Google Scholar]
- Li, Z.; Ma, H.L.; Yao, Y.F. A preliminary study on basic mechanical properties of salt rock at high temperature and high pressure. Chin. J. Undergr. Space Eng. 2013, 9, 981–985. [Google Scholar]
- Liang, W.G.; Zhao, Y.S.; Xu, S.G. Testing study on physical and mechanical properties of heated salt rock within 240 °C. Chin. J. Rock Mech. Eng. 2004, 23, 2365–2369. [Google Scholar]
- Chen, J.W. Studies on Temperature Effect of Mechanical Properties and Micro Mechanism of Salt Rock; Institute of rock and soil mechanics, Graduate University of Chinese Academy of Sciences: Wuhan, China, 2008. [Google Scholar]
- Wang, T.; Yang, C.; Ma, H.; Daemen, J.; Wu, H. Safety evaluation of gas storage caverns located close to a tectonic fault. J. Nat. Gas Sci. Eng. 2015, 23, 281–293. [Google Scholar] [CrossRef]
- Yang, C.; Wang, T.; Li, Y.; Yang, H.; Li, J.; Qu, D.; Xu, B.; Yang, Y.; Daemen, J.J.K. Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China. Appl. Energy 2015, 137, 467–481. [Google Scholar] [CrossRef]
- Liu, J.; Yang, C.; Wen, W.U.; Yinping, L.I. Experiment study on short-term strength and deformation properties of salt rocks. Chin. J. Rock Mech. Eng. 2006, 25, 3104–3109. [Google Scholar]
- Liu, D.K.; Li, K.G. The discussion on effect of cohesion and internal frictional angle on the peak strength of rock. Conserv. Util. Miner. Recourses 2015, 3, 16–19. [Google Scholar]
- Yang, C.H.; Li, Y.P.; Qu, D.A.; Cheng, F.; Yin, X.Y. Advances in researches of the mechanical behaviors of bedded salt rocks. Adv. Mech. 2008, 38, 484–494. [Google Scholar]
- Wang, A.M. The Deformation Mechanism and Nonlinear Creep Constitutive Model of Bedded Salt Rock; Institute of rock and soil mechanics, Graduate University of Chinese Academy of Sciences: Wuhan, China, 2008. [Google Scholar]
- Itasca Consulting Group Inc. FLAC3D Version 6.0 Users’ Manual; Itasca Consulting Group Inc.: Minneapolis, MN, USA, 2019. [Google Scholar]
- Cyran, K.; Kowalski, M. Shape Modelling and Volume Optimization of Salt Caverns for Energy Storage. Appl. Sci. 2021, 11, 423. [Google Scholar] [CrossRef]
- Cyran, K. Insight into a shape of salt storage caverns. Arch. Min. Sci. 2020, 65, 363–398. [Google Scholar]
- Onal, E. Stability Analyses of Differently Shaped Salt Caverns for Underground Natural Gas Storage. Master’s Thesis, The Penn-Sylvania State University, State College, PA, USA, 2013. [Google Scholar]
- Wang, T.; Yang, C.; Chen, J.; Daemen JJ, K. Geomechanical investigation of roof failure of China’s first gas storage salt cavern. Eng. Geol. 2018, 243, 59–69. [Google Scholar] [CrossRef]
- Wang, T.T.; Yan, X.Z.; Yang, H.L.; Yang, X.J. Stability analysis of pillars between bedded salt cavern gas storages. J. China Coal Soc. 2011, 36, 790–795. [Google Scholar]
- Li, H.; Deng, J.; Wanyan, Q.; Feng, Y.; Lenwoue, A.; Luo, C.; Hui, C. Numerical Investigation on Shape Optimization of Small-Spacing Twin-Well for Salt Cavern Gas Storage in Ultra-Deep Formation. Energies 2021, 14, 2859. [Google Scholar] [CrossRef]
No. | Density /g/cm3 | Diameter /mm | P-Wave Slowness-Time /us/ft | S-Wave Slowness-Time /us/ft | Temperature/°C | Methods |
---|---|---|---|---|---|---|
1 | 2.24 | 50.09 | / | / | 25 | Indirect Tension |
2 | 2.20 | 50.05 | / | / | ||
3 | 2.25 | 50.06 | / | / | ||
4 | 2.23 | 50.12 | / | / | ||
5 | 2.23 | 49.76 | 77.25 | 146.86 | Direct Tension | |
6 | 2.21 | 50.04 | 78.16 | 152.35 | ||
7 | 2.43 | 49.99 | 68.96 | 113.93 | Uniaxial Compression | |
8 | 2.22 | 50.25 | 68.86 | 121.04 | ||
9 | 2.41 | 50.17 | 78.23 | 142.16 | ||
10 | 2.21 | 49.68 | 69.09 | 122.06 | ||
11 | 2.23 | 50.15 | 70.04 | 127.80 | ||
12 | 2.20 | 49.96 | 65.13 | 131.06 | Triaxial Compression | |
13 | 2.29 | 50.03 | 65.93 | 106.04 | ||
14 | 2.34 | 50.01 | 69.56 | 123.93 | ||
15 | 2.17 | 49.98 | 75.56 | 135.67 | ||
16 | 2.21 | 49.89 | 71.000 | 125.24 | ||
17 | 2.33 | 50.09 | 76.88 | 147.35 | Uniaxial Creep | |
18 | 2.36 | 50.09 | 77.79 | 152.84 | ||
19 | 2.15 | 50.30 | 70.44 | 129.59 | ||
20 | 2.23 | 50.15 | 72.86 | 130.47 | ||
21 | 2.17 | 50.15 | 68.46 | 132.35 | ||
22 | 2.16 | 50.03 | 70.20 | 118.21 | Triaxial Creep | |
23 | 2.15 | 50.05 | 69.15 | 125.08 | ||
24 | 2.17 | 50.06 | 70.22 | 118.79 | ||
25 | 2.17 | 50.04 | 75.19 | 142.20 | ||
26 | 2.23 | 50.03 | 76.23 | 146.41 | ||
27 | 2.15 | 49.98 | 68.25 | 129.46 | 60 | High Temperature Triaxial Compression |
28 | 1.97 | 49.86 | 71.92 | 138.38 | ||
29 | 2.46 | 50.12 | 111.59 | 184.04 | ||
30 | 2.20 | 49.80 | 67.6 | 124.82 | ||
31 | 2.27 | 50.07 | 69.83 | 135.27 | ||
32 | 2.19 | 20.16 | 69.47 | 128.66 | High Temperature Triaxial Creep |
No | Density (g/cm3) | Maximum Load (N) | Uniaxial Tensile Strength (MPa) | Average Strength (MPa) |
---|---|---|---|---|
1 | 2.24 | 2505 | 1.27 | 1.51 |
2 | 2.20 | 2690 | 1.36 | |
3 | 2.25 | 4000 | 2.02 | |
4 | 2.23 | N/A | N/A | |
5 | 2.23 | 2130 | 1.54 | |
6 | 2.21 | 1940 | 1.38 |
No | Density (g/cm3) | Peak Strength (MPa) | Elastic Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|
7 | 2.43 | 25.74 | 8.89 | 0.33 |
8 | 2.22 | 28.55 | 7.63 | 0.3 |
9 | 2.41 | 28.18 | 6.48 | 0.23 |
10 | 2.21 | 22.87 | 6.23 | 0.3 |
11 | 2.23 | 24.86 | 1.56 | 0.32 |
Average | / | 26.04 | 6.16 | 0.296 |
No | Density (g/cm3) | Confining Pressure (MPa) | Peak Strength (MPa) | Elastic Modulus (GPa) |
---|---|---|---|---|
12 | 2.20 | 30 | 72.87 | 10.93 |
13 | 2.29 | 10 | 55.91 | 8.46 |
14 | 2.34 | 15 | 66.94 | 8.04 |
15 | 2.17 | 30 | 76.27 | 8.67 |
16 | 2.21 | 15 | 65.65 | 7.37 |
No | Density (g/cm3) | Confining Pressure (MPa) | Peak Strength (Mpa) | Elastic Modulus (Gpa) |
---|---|---|---|---|
27 | 2.15 | 30 | 69.28 | 7.21 |
28 | 1.97 | 30 | 67.45 | 9.98 |
29 | 2.46 | 10 | 53.81 | 5.23 |
30 | 2.20 | 15 | 61.37 | 7.63 |
31 | 2.27 | 15 | 63.02 | 8.12 |
No | Density (g/cm3) | Confining Pressure (MPa) | Stress Difference (MPa) | Creep Rate (h−1) |
---|---|---|---|---|
17 | 2.33 | 0 | 10 | 0.000186 |
18 | 0.000418 | |||
25 | 0.000696 | |||
18 | 2.36 | 12 | 0.000315 | |
18 | 0.000664 | |||
24 | / | |||
19 | 2.15 | 8 | 0.00023 | |
13 | 0.000676 | |||
18 | 0.000978 | |||
20 | 2.23 | 15 | 0.000954 | |
20 | / | |||
21 | 2.17 | 10 | 0.00036 | |
15 | 0.000962 | |||
20 | 0.001523 | |||
22 | 2.16 | 30 | 15 | 0.000539 |
25 | 0.001419 | |||
35 | 0.00279 | |||
23 | 2.15 | 12 | 0.00026 | |
20 | 0.000921 | |||
28 | 0.001782 | |||
24 | 2.17 | 10 | 0.000187 | |
20 | 0.000606 | |||
30 | 0.001672 | |||
25 | 2.17 | 15 | 0.000518 | |
25 | 0.000857 | |||
35 | 0.001533 | |||
26 | 2.23 | 10 | 0.000424 | |
20 | 0.000579 | |||
30 | 0.000846 |
Core from | Cohesion (MPa) | Internal Friction Angle (°) |
---|---|---|
Sanshui | 8.32 | 28.1 |
Yunying | 4.36 | 39.9 |
Jintan | 6.29 | 28.6 |
Core from | (MPa−n/h) | |
---|---|---|
Sanshui | 3.61 × 10−6 | 1.78 |
Yunying | 3.56 × 10−10 | 3.68 |
Jintan | 1.98 × 10−8 | 3.50 |
Lithology | Elastic Modulus (GPa) | Poisson’s Ratio | Cohesion (MPa) | Friction Angle (°) | Tensile Strength (MPa) | A (MPa−n/h) | n |
---|---|---|---|---|---|---|---|
Rock salt | 6.16 | 0.3 | 8.32 | 28.1 | 1.51 | 3.61 × 10−6 | 1.78 |
Mudstone | 16 | 0.27 | 5 | 26.4 | 3.23 | 2.5 × 10−7 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wanyan, Q.; Ding, G.; Li, K.; Kou, Y.; Bai, S.; Ran, L.; Wu, J.; Deng, J. Geomechanical Feasibility Analysis of Salt Cavern Gas Storage Construction in Sanshui Basin, Guangdong Province. Eng 2022, 3, 709-731. https://doi.org/10.3390/eng3040048
Li H, Wanyan Q, Ding G, Li K, Kou Y, Bai S, Ran L, Wu J, Deng J. Geomechanical Feasibility Analysis of Salt Cavern Gas Storage Construction in Sanshui Basin, Guangdong Province. Eng. 2022; 3(4):709-731. https://doi.org/10.3390/eng3040048
Chicago/Turabian StyleLi, Haitao, Qiqi Wanyan, Guosheng Ding, Kang Li, Yanxia Kou, Song Bai, Lina Ran, Jianan Wu, and Jingen Deng. 2022. "Geomechanical Feasibility Analysis of Salt Cavern Gas Storage Construction in Sanshui Basin, Guangdong Province" Eng 3, no. 4: 709-731. https://doi.org/10.3390/eng3040048
APA StyleLi, H., Wanyan, Q., Ding, G., Li, K., Kou, Y., Bai, S., Ran, L., Wu, J., & Deng, J. (2022). Geomechanical Feasibility Analysis of Salt Cavern Gas Storage Construction in Sanshui Basin, Guangdong Province. Eng, 3(4), 709-731. https://doi.org/10.3390/eng3040048