Accounting Greenhouse Gas Emissions from Municipal Solid Waste Treatment by Composting: A Case of Study Bolivia
Abstract
:1. Introduction
2. Methodology
2.1. GHG Emission Sources
2.2. Estimation Method
2.2.1. Solid Waste Disposal Sites
2.2.2. Biological Treatment of Solid Waste: Composting Process
- Step 1:
- Data collection on the amount of solid waste that is composted (regional and country-specific default data for some countries is given in the 2006 IPCC guideline) [14];
- Step 2:
- Estimate the CH4 and N2O emissions from composting process with Equations (8) and (9). The EF must be considered according to the facilities to get the specific information (tiers).
2.3. Sampling Methods
2.3.1. Flux Chamber Method
2.3.2. Funnel Method
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministerio de Medioambiente y Agua. Inventario de Gases de Efecto Invernadero de Bolivia 2002–2004. In Programa Nacional de Cambios Climáticos en el Marco de la Segunda Comunicación Nacional de Bolivia Ante la Convención Marco de las Naciones Unidas Sobre el Cambio Climático (CMNUCC); Ministerio de Medioambiente y Agua: La Paz, Bolivia, 2017; Volume 1. (In Spanish) [Google Scholar]
- Viceministerio de Agua Potable y Saneamiento Básico. Diagnóstico de la Gestión de Residuos Sólidos en Bolivia. Viceministerio de Agua Potable y Saneamiento Básico: La Paz, Bolivia, 2010. (In Spanish) [Google Scholar]
- Morales, S. MMAyA; Ministerio de Medioambiente y Agua: La Paz, Bolivia, 2019. [Google Scholar]
- Navarro, F.; Marco, B.; Massimo, Z.; Torretta, V.M.R. An Interdisciplinary Approach for Introducing Sustainable Integrated Solid Waste Management System in Developing Countries: The Case of La Paz (Bolivia). SNSIM. 2016. Available online: https://www.ecomondo.com/ecomondo/programma-eventi/procedia_esem_vol_3_nr_2_2016.pdf#page=20 (accessed on 20 January 2021).
- Scow. Handbook Composting Market. 2016. Available online: http://www.biowaste-scow.eu/Handbook-for-Compost-marketing (accessed on 20 January 2021).
- IPCC. Biological Treatment of Solid Waste. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_4_Ch4_Bio_Treat.pdf (accessed on 20 January 2021).
- Ahn, H.K.; Mulbry, W.; White, J.W.; Kondrad, S.L. Pile mixing increases greenhouse gas emissions during composting of dairy manure. Bioresour. Technol. 2011, 102, 2904–2909. [Google Scholar] [CrossRef] [PubMed]
- IPCC. How Does the IPCC Work? 2019. Available online: https://archive.ipcc.ch/organization/organization_structure.shtml (accessed on 20 January 2021).
- UNFCCC. Guidelines for the Preparation of National Communications from Parties Not Included in Annex I to the Convention. 2011. Available online: https://unfccc.int/sites/default/files/17_cp.8.pdf (accessed on 20 January 2021).
- IPCC. Guidelines for National Greenhouse Gas Inventories. 2015. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html (accessed on 20 January 2021).
- Cabrera, C.L. Emisiones de Metano Derivadas de los Desechos Sólidos Municipales en Cuba. Obs. Ambient. 2011, 14, 23. Available online: http://bbibliograficas.ucc.edu.co:2068/docview/963362173/6F0465626ABC4D55PQ/53?accountid=44394%0A (accessed on 20 January 2021). (In Spanish).
- Riitta, P.; Wagner, J.; Silva, A.; Qingxian, G.; López Cabrera, C.; Katarina, M.; Hans, O.; Elizabeth, S.; Chhemendra, S.; Alison, S.; et al. Biological treatment of solid waste. In IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Riitta, P.; Svardal, P.; Wagner, J.; Silva, A.; Qingxian, G.; Carlos, L.C.; Mareckova, K.; Hans, O.; Masato, Y. Solid waste disposal. In IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006; pp. 1–40. [Google Scholar]
- Riitta, P.; Chhemendra, S.; Masato, Y.; Wagner, J.; Silva, A.; Qingxian, G.; Matthias, K.; López Cabrera, C.; Katarina, M.; Sonia Maria, M.V. Waste Generation, Composition. IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 20 January 2021).
- Plana, R. Compostaje de Residuos Orgánicos; Gobierno de Catalunya: Catalunya, Spain, 2015. [Google Scholar]
- Lim, S.L.; Lee, L.H.; Wu, T.Y. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis. J. Clean. Prod. 2016, 111, 262–278. [Google Scholar] [CrossRef]
- Phong, N.T. Greenhouse gas emissions from anaerobic digestion plants. Vietnam J. Sci. Technol. 2018, 54, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Chang, C.; Larney, F.J.; Travis, G.R. Greenhouse gas emissions during cattle feedlot manure composting. J. Environ. Qual. 2001, 31, 376–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellebrand, H.J. Emission of nitrous oxide and other trace gases during composting of grass and green waste. J. Agric. Eng. Res. 2008, 69, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.N.; Henriksen, K.; Sommer, S.G. Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: Effects of covering. Atmos. Environ. 2006, 40, 4172–4181. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, G.-K.P.; Tignor, S.K.; Allen, J.B.; Nauels, Y.X.; Bex, V.; Midgley, P.M. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Roig, A. Strategies to transform organic residues from olive and wine industries: Greenhouse gas emissions and climate change. Acta Horticul. 2015, 1076, 57–68. [Google Scholar] [CrossRef]
- Beck-Friis, B.; Pell, M.; Sonesson, U.; Jönsson, H.; Kirchmann, H. Formation and emission of N2O and CH4 from compost heaps of organic household waste. Environ. Monit. Assess. 2000, 62, 317–331. [Google Scholar] [CrossRef]
- Sánchez, A.; Artola, A.; Font, X.; Gea, T.; Barrena, R.; Gabriel, D.; Mondini, C. Greenhouse gas from organic waste composting: Emissions and measurement. In CO2 Sequestration, Biofuels and Depollution; Springer International Publishing: Cham, Switzerland, 2015; Volume 5, pp. 33–70. [Google Scholar]
- Rochette, P. Towards a standard non-steady-state chamber methodology for measuring soil N2O emissions. Anim. Feed Sci. Technol. 2011, 166–167, 141–146. [Google Scholar] [CrossRef]
- Zhu-Barker, X.; Bailey, S.K.; Paw, U.K.T.; Burger, M.; Horwath, W.R. Greenhouse gas emissions from green waste composting windrow. Waste Manag. 2017, 59, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.K.; Boldrin, A.; Christensen, T.H.; Scheutz, C. Greenhouse gas emissions from home composting of organic household waste. Waste Manag. 2010, 30, 2475–2482. [Google Scholar] [CrossRef]
- INE Bolivia. Solid Waste Generation. 2020. Available online: https://www.ine.gob.bo/index.php/medio-ambiente/residuos-solidos-cuadros-estadisticos/ (accessed on 20 January 2021). (In Spanish).
- Ministerio de Medioambiente y Agua. Guía Para el Aprovechamiento de Residuos Sólidos Orgánicos; Ministerio de Medioambiente y Agua: La Paz, Bolivia, 2013. [Google Scholar]
- Estado Plurinacional de Bolivia. Tercera Comunicación Nacional del Estado Plurinacional de Bolivia. 2020. Available online: https://unfccc.int/sites/default/files/resource/NC3%20Bolivia.pdf (accessed on 20 January 2021).
- Quispe, M. Ministerio de Medio Ambiente y Agua: La Paz, Bolivia. 2019. Available online: https://www.mmaya.gob.bo/ (accessed on 20 January 2021). (In Spanish).
- UDAPE. Sector Agropecuario Bolivia. 2004. Available online: https://www.udape.gob.bo/portales_html/diagnosticos/diagnostico2007/documentos/Documento%20Sector%20Agricola.pdf (accessed on 20 January 2021). (In Spanish).
Category | GHG | Inclusion in the Emissions Report | Comments |
---|---|---|---|
1. Solid waste disposal | CO2 | No | Biogenic origin and net emissions are accounted for the AFOLU Sector. |
CH4 | Yes | Fugitive emissions derived from the anaerobic decomposition of waste. | |
N2O | No | Presumed insignificant. | |
2. Biological treatment of solid waste | CH4 | Yes | Considers CH4 and N2O emissions for composting process; and CH4 emissions for biogas production. If the biogas generated is used to produce energy, it will be reported in the energy sector and its N2O emissions are presumed negligible. |
N2O | Yes/No | ||
3. Incineration and open burning of waste | CO2 | Yes | The GHG emissions from waste incineration with energy recovery are reported in the Energy Sector, in the other case are reported in the waste sector; Only CO2 emissions from fossil origin must be reported. |
CH4 | Yes | ||
N2O | Yes |
Type of Basis | CH4 Emission Factors (g of CH4/kg Waste Treated) | N2O Emission Factors (g of N2O/kg Waste Treated) | Remarks |
---|---|---|---|
On a dry weight | 10 (0.08–20) | 0.6 (0.2–1.6) | Assumptions: 25–50% DOC in dry matter. 2% N in dry matter, 60% moisture content. |
On a wet weight | 4 (0.03–8) | 0.24 (0.06–0.6) |
No | Parameter | Symbol | Unit | Value | Remarks |
---|---|---|---|---|---|
1 | Mass of the waste deposited in 2019 | Gg | 1 601 | Official data of INE Bolivia [28] | |
2 | Degradable organic carbon | fraction | 0.11 | Considering 55.2% of organic waste and 8% of paper [29] | |
3 | Fraction of DOC that can decompose | fraction | 0.50 | IPCC default value [13] | |
4 | CH4 correction factor for aerobic decomposition | fraction | 0.82 | 70% are disposed in controlled sites and 30% are disposed in unmanaged sites < 5 m [4] | |
5 | Reaction constant | fraction | 0.23 | Considering 55.2% of organic waste and 8% of paper; and default values of IPCC [13] | |
6 | Fraction of CH4 in generated landfill gas | fraction | 0.5 | IPCC default value [13] | |
7 | Total amount of CH4 recovered in 2016 | Gg | 0 | There is no methane recovery in landfills [29] | |
8 | Oxidation factor | fraction | 0 | IPCC default value [13] |
No | Biowaste Treated in Composting Plants | Weight Biowaste (Gg) | Method | CH4 Emissions (Gg of CH4) | N2O Emissions (Gg of N2O) | Total GHG Emissions (Gg of CO2-eq) |
---|---|---|---|---|---|---|
1 | 50% of the organic waste collected during 2019 | 441.86 | IPCC default values (Tier 1) | 1.77 | 0.11 | 77.59 |
Flux chamber: Closed chamber (Tier 2) | 0.93 | 0.12 | 58.18 | |||
Funnel (Tier 2) | 0.90 | 0.01 | 28.34 | |||
2 | 20% of the organic waste collected during 2019 | 176.74 | IPCC default values (Tier 1) | 0.71 | 0.04 | 31.04 |
Flux chamber: Closed chamber (Tier 2) | 0.37 | 0.05 | 23.27 | |||
Funnel (Tier 2) | 0.36 | 0.00 | 11.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltran-Siñani, M.; Gil, A. Accounting Greenhouse Gas Emissions from Municipal Solid Waste Treatment by Composting: A Case of Study Bolivia. Eng 2021, 2, 267-277. https://doi.org/10.3390/eng2030017
Beltran-Siñani M, Gil A. Accounting Greenhouse Gas Emissions from Municipal Solid Waste Treatment by Composting: A Case of Study Bolivia. Eng. 2021; 2(3):267-277. https://doi.org/10.3390/eng2030017
Chicago/Turabian StyleBeltran-Siñani, Magaly, and Antonio Gil. 2021. "Accounting Greenhouse Gas Emissions from Municipal Solid Waste Treatment by Composting: A Case of Study Bolivia" Eng 2, no. 3: 267-277. https://doi.org/10.3390/eng2030017
APA StyleBeltran-Siñani, M., & Gil, A. (2021). Accounting Greenhouse Gas Emissions from Municipal Solid Waste Treatment by Composting: A Case of Study Bolivia. Eng, 2(3), 267-277. https://doi.org/10.3390/eng2030017