# Finite Element Framework for Efficient Design of Three Dimensional Multicomponent Composite Helicopter Rotor Blade System

## Abstract

**:**

## 1. Introduction

## 2. Constitutive Model for Composite Laminate

## 3. Finite Element Formulation

## 4. Beam Geometry and Material Parameters

## 5. Results and Discussions

#### 5.1. Tip Deformations and Stress Fields

#### 5.2. Efficient Design of Rotor Blade Geometry

## 6. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Herakovich, C.T. Mechanics of Fibrous Composites; John Wiley and Sons: New York, NY, USA, 1998. [Google Scholar]
- Chaboche, J.-L. Comprehensive Structural Integrity; Elsevier Pergamon: Amsterdam, The Netherlands; San Diego, CA, USA, 2003. [Google Scholar]
- Barbero, E.J. Introduction to Composite Materials Design; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Seddon, J.M.; Simon, N. Basic Helicopter Aerodynamics; John Wiley and Sons: New York, NY, USA, 2011; Volume 40. [Google Scholar]
- Maksimovic, S.; Kozic, M.; Stetic-Kozic, S.; Maksimović, K.; Vasović, I.; Maksimovic, M. Determination of load distributions on main helicopter rotor blades and strength analysis of its structural components. J. Aero. Eng.
**2014**, 27, 0401–0432. [Google Scholar] [CrossRef] - Alkahe, J.; Rand, O. Analytic extraction of the elastic coupling mechanisms in composite blades. Compos. Struct.
**2000**, 49, 399–413. [Google Scholar] [CrossRef] - Ghiringhelli, G.L.; Masarati, P.; Mantegazza, P. Analysis of an actively twisted rotor by multibody global modeling. Compos. Struct.
**2001**, 52, 113. [Google Scholar] [CrossRef] - Morozov, E.V.; Sylantiev, S.A.; Evseev, E.G. Impact damage tolerance of laminated composite helicopter blades. Compos. Struct.
**2003**, 62, 367–371. [Google Scholar] [CrossRef] - Conlisk, A.T. Modern helicopter rotor aerodynamics. Prog. Aero. Sci.
**2001**, 37, 419–476. [Google Scholar] [CrossRef] - Sirohi, J.; Michael, S.L. Measurement of helicopter rotor blade deformation using digital image correlation. Optic. Eng.
**2012**, 51, 043603. [Google Scholar] [CrossRef] - Brocklehurst, A.; Barakos, G.N. A review of helicopter rotor blade tip shapes. Prog. Aero. Sci.
**2013**, 56, 35–74. [Google Scholar] [CrossRef] - Kang, H.; Hossein, S.; Gandhi, F. Dynamic blade shape for improved helicopter rotor performance. J. Am. Heli. Soc.
**2010**, 55, 32008. [Google Scholar] [CrossRef] - Kumar, A.A.; Viswamurthy, S.R.; Ganguli, R. Correlation of helicopter rotor aeroelastic response with HART-II wind tunnel test data. Air. Eng. Aero. Tech.
**2010**, 82, 237–248. [Google Scholar] [CrossRef] - Rasuo, B. Experimental techniques for evaluation of fatigue characteristics of laminated constructions from composite materials: Full-scale testing of the helicopter rotor blades. J. Test. Eval.
**2011**, 39, 237–242. [Google Scholar] - Ganguli, R.; Chopra, I.; Haas, D.J. Simulation of helicopter rotor-system structural damage, blade mistracking, friction and freeplay. J. Aircraft
**1998**, 35, 591. [Google Scholar] [CrossRef] - Yang, M.; Chopra, I.; Haas, D.J. Sensitivity of rotor-fault-induced vibrations to operational and design parameters. J. Am. Heli. Soc.
**2004**, 49, 328–339. [Google Scholar] [CrossRef] - Jones, R.M. Mechanics of Composite Materials, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Bathe, K.J. Finite Element Procedures; Prentice-Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Lemaitre, J.; Chaboche, J.-L. Mechanics of Solid Materials; Cambridge University Press: Cambridge, UK, 1990; pp. 346–450. [Google Scholar]
- Mansoor, R.; Hosseini, S.M. An ILU preconditioner for nonsymmetric positive definite matrices by using the conjugate Gram-Schmidt process. J. Comp. App. Math.
**2006**, 188, 150–164. [Google Scholar] - Straubhaar, J. Preconditioners for the conjugate gradient algorithm using Gram-Schmidt and least squares methods. Int. J. Comp. Math.
**2007**, 84, 89–108. [Google Scholar] [CrossRef] - Levitas, V.I.; Roy, A.M.; Preston, D.L. Multiple twinning and variant-variant transformations in martensite: Phase-field approach. Phys. Rev. B
**2013**, 88, 054113. [Google Scholar] [CrossRef] [Green Version] - Levitas, V.I.; Roy, A.M. Multiphase phase field theory for temperature-and stress-induced phase transformations. Phys. Rev. B
**2015**, 91, 174109. [Google Scholar] [CrossRef] [Green Version] - Levitas, V.I.; Roy, A.M. Multiphase phase field theory for temperature-induced phase transformations: Formulation and application to interfacial phases. Acta Mater.
**2016**, 105, 244–257. [Google Scholar] [CrossRef] [Green Version] - Roy, A.M. Multiphase phase field approach for solid-solid phase transformations via propagating interfacial phase in HMX. J. App. Phys.
**2021**, 129, 025103. [Google Scholar] [CrossRef] - Roy, A.M. Influence of Interfacial Stress on Microstructural Evolution in NiAl Alloys. JETP Lett.
**2020**, 112, 173–179. [Google Scholar] [CrossRef] - Roy, A.M. Effects of interfacial stress in phase field approach for martensitic phase transformation in NiAl shape memory alloys. App. Phys. A
**2020**, 126, 576. [Google Scholar] [CrossRef] - Roy, A.M. Evolution of Martensitic Nanostructure in NiAl Alloys: Tip Splitting and Bending. Mat. Sci. Res. Ind.
**2020**, 17, 3–6. [Google Scholar] [CrossRef] - Roy, A.M. Barrierless melt nucleation at solid-solid interface in energetic nitramine octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine. Materialia
**2021**, 15, 101000. [Google Scholar] [CrossRef] - Roy, A.M. Influence of nanoscale parameters on solid-solid phase transformation in Octogen crystal: Multiple solution and temperature effect. JETP Lett.
**2021**. [Google Scholar] [CrossRef] - Roy, A.M. Phase Field Approach for Multiphase Phase Transformations, Twinning, and Variant-Variant Transformations in Martensite. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2015. [Google Scholar] [CrossRef]
- Solomon, E.; Natarajan, A.; Roy, A.M.; Sundararaghavan, V.; Van der Ven, A.; Marquis, E. Stability and strain-driven evolution of precipitate in Mg-Y alloys. Acta Mater.
**2019**, 166, 148–157. [Google Scholar] [CrossRef] - Gusev, A.A.; Peter, J.H.; Ian, M. Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite. Compos. Sci. Tech.
**2000**, 60, 535–541. [Google Scholar] [CrossRef] - Younes, R.; Hallal, A.; Fardoun, F.; Chehade, F.H. Comparative review study on elastic properties modeling for unidirectional composite materials. Comp. Prop.
**2012**, 17, 391–408. [Google Scholar] - Burlayenko, V.N.; Sadowski, T. Effective elastic properties of foam-filled honeycomb cores of sandwich panels. Compos. Struct.
**2010**, 92, 2890–2900. [Google Scholar] [CrossRef] - Zhu, H.X.; Knott, J.F.; Mills, N.J. Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. J. Mech. Phy. Sol.
**1997**, 45, 319–343. [Google Scholar] [CrossRef] - HyperMesh. Available online: www.altair.com/hypermesh (accessed on 1 August 2020).
- MATLAB. Version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010. [Google Scholar]
- ABAQUS. Dassault System; Version 6.9; Simulia Corp: Johnston, RI, USA, 2010. [Google Scholar]
- Bruno, D.; Greco, F.; Lonetti, P. A coupled interface-multilayer approach for mixed mode delamination and contact analysis in laminated composites. Int. J. Sol. Struct.
**2003**, 40, 7245–7268. [Google Scholar] [CrossRef] - de Borst, R.; Remmers, J.J.C. Computational modeling of delamination. Compos. Sci. Technol.
**2006**, 66, 713–722. [Google Scholar] [CrossRef] - Abisset, E.; Daghia, F.; Ladeveze, P. On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates. Compos. Part A Appl. Sci. Manuf.
**2011**, 42, 1515–1524. [Google Scholar] [CrossRef] - Georgantzinos, S.K.; Giannopoulos, G.I.; Markolefas, S.I. Vibration Analysis of Carbon Fiber-Graphene-Reinforced Hybrid Polymer Composites Using Finite Element Techniques. Materials
**2020**, 13, 4225. [Google Scholar] [CrossRef] - Georgantzinos, S.K.; Stamoulis, K.P.; Markolefas, S.I. Mechanical Response of Hybrid Laminated Polymer Nanocomposite Structures: A Multilevel Numerical Analysis. SAE Int. J. Aerosp.
**2020**, 13, 243–256. [Google Scholar] [CrossRef] - Yu, W.; Hodges, D.H. Elasticity solutions versus asymptotic sectional analysis of homogeneous, isotropic, prismatic beams. J. App. Mech.
**2004**, 71, 15–23. [Google Scholar] [CrossRef] - Yu, W.; Hodges, D.H.; Ho, J.C. Variational asymptotic beam sectional analysis—An updated version. Int. J. Eng. Sci.
**2012**, 59, 40–64. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Schematic of a unidirectional orthotrophic composite laminate with principal material co-ordinate system ($1,2$, and 3) and global co-ordinates ($x,y$, and z). (

**b**) Principal material axis 3 is rotated by $\theta $ in $x-y$ plane with anticlockwise angle with respect to x-axis is taken as positive.

**Figure 2.**(

**a**) 3-D beam geometry of the helicopter rotor blade consisting of unidirectional glass/epoxy (UD G/E), unidirectional ±45° carbon/epoxy (UD C/E), and isotropic foam; (

**b**) cross section near the root; (

**c**) cross section at the tip of the rotor.

**Figure 3.**(

**a**) Typical finite element mesh with liner tetrahedral elements in Hypermesh [37]; (

**b**) zoomed part of the root showing the nodal continuity of different parts of composite laminate in the finite element (FE) model.

**Figure 4.**Distribution and comparison of different parts of displacement field between Abaqus FEA and FE model for (

**a**) ${u}_{x}/{u}^{*}$ along y at $z={L}_{z}/2$ for applied traction ${t}_{x}$; (

**b**) ${v}_{y}/{v}^{*}$ along x at $y={L}_{y}/2$ for applied traction ${t}_{y}$; (

**c**) ${w}_{z}/{w}^{*}$ along y at $z={L}_{z}/2$ for applied traction ${t}_{z}$ at the tip of the blade (i.e., $x={L}_{x}$) for ${t}_{f}/{L}_{y}=0.45$, ${t}_{c}/{t}_{g}=0.3$, and ${w}_{c}/{b}_{g}=0.05$.

**Figure 5.**Distribution and comparison of different parts of stress fields between the numerical results of Abaqus FEA and FE model for (

**a**) ${\sigma}_{x}/{\sigma}^{*}$ along y at $z={L}_{z}/2$ for applied traction ${t}_{x}$; (

**b**) ${\sigma}_{y}/{\sigma}^{*}$ along x at $y={L}_{y}/2$ for applied traction ${t}_{y}$; (

**c**) ${\sigma}_{z}/{\sigma}^{*}$ along y at $z={L}_{z}/2$ for applied traction ${t}_{z}$ MPa at the tip of the blade(i.e., $x={L}_{x}$) for ${t}_{f}/{L}_{y}=0.45$, ${t}_{c}/{t}_{g}=0.3$, and ${w}_{c}/{b}_{g}=0.05$.

**Figure 6.**Variation of ${u}_{x}^{c}/{u}^{*}$ as a function of (

**a**) ${t}_{c}/{t}_{g}$ in the range $0.2\le {t}_{c}/{t}_{g}\le 0.68$ and (

**b**) ${w}_{c}/{b}_{g}$ in the range $0.03\le {w}_{c}/{b}_{g}\le 0.2$ for different values of ${t}_{f}/{L}_{y}$.

**Figure 7.**Variation of ${v}_{y}^{c}/{v}^{*}$ as a function of (

**a**) ${t}_{c}/{t}_{g}$ in the range $0.2\le {t}_{c}/{t}_{g}\le 0.68$ and (

**b**) ${w}_{c}/{b}_{g}$ in the range $0.03\le {w}_{c}/{b}_{g}\le 0.2$ for different values of ${t}_{f}/{L}_{y}$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Roy, A.M.
Finite Element Framework for Efficient Design of Three Dimensional Multicomponent Composite Helicopter Rotor Blade System. *Eng* **2021**, *2*, 69-79.
https://doi.org/10.3390/eng2010006

**AMA Style**

Roy AM.
Finite Element Framework for Efficient Design of Three Dimensional Multicomponent Composite Helicopter Rotor Blade System. *Eng*. 2021; 2(1):69-79.
https://doi.org/10.3390/eng2010006

**Chicago/Turabian Style**

Roy, Arunabha M.
2021. "Finite Element Framework for Efficient Design of Three Dimensional Multicomponent Composite Helicopter Rotor Blade System" *Eng* 2, no. 1: 69-79.
https://doi.org/10.3390/eng2010006