Carbonation Potential of Cementitious Structures in Service and Post-Demolition: A Review
Abstract
:1. Introduction
2. Carbonation Reaction in Concrete
3. Uptake of CO2 Emissions by Carbonation of Concrete and Other Cementitious Products: Quantification
4. Carbonation of Recycled Aggregates
5. Conclusions
- -
- In terms of the CO2 capture capacity of the concrete structures in service, it is necessary to take into consideration several influencing factors, including concrete permeability, type of cement, water to binder ratio, CO2 concentration and time and environment of exposure. Therefore, it can be expected that concretes produced with blended cements have a higher carbonation rate than Portland cement. Moreover, concretes with a higher porosity present greater CO2 penetration, thus faster carbonation. Relative humidity should be around 50–60% to increase the natural carbonation rate of the concrete. The studies analysed concretes with compressive strengths between 15 and 35 MPa and showed that concrete with a lower compressive strength increased the natural carbonation rate.
- -
- In general, it is reported by several studies that around 19–55% of the CO2 emitted is captured by the cementitious elements. The type of cementitious element is also an influencing aspect, since rendering mortars present a higher CO2 uptake than civil works and building concretes, due to the larger surface exposed to the environment and to higher porosity. Even though the mortars consume approximately only 30% of all the cement produced, they sequestrate around 60% of the CO2 captured by the cementitious materials.
- -
- Regarding the CO2 capture of CDW aggregates, it has been reported that the carbonation rate of demolished concrete is faster than during service life, since after demolition, the exposed surface drastically increases. Concrete after demolition can increase CO2 uptake by up to 50% in comparison with the structures in service. Influencing factors such as particle size, cement content and relative humidity affect the carbonation. Thinner recycled aggregates carbonate faster than the others. The age of the building at demolition time is also important, since old constructions are prone to be more carbonated. The time that the recycled aggregate has been stockpiling also increases the carbonation percentage, since the more time the CDW is in contact with the air, the more fully carbonated the particle will be. Generally, considering several studies, recycled concrete aggregate from demolition captures about 10 kg of CO2 per 1 ton of waste.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazurana, L.; Bittencourt, P.R.S.; Scremin, F.R.; Neves Junior, A.; Possan, E. Determination of CO2 capture in rendering mortars produced with recycled construction and demolition waste by thermogravimetry. J. Therm. Anal. Calorim. 2021, 147, 1071–1080. [Google Scholar] [CrossRef]
- Kaliyavaradhan, S.K.; Ling, T.C. Potential of CO2 sequestration through construction and demolition (C&D) waste—An overview. J. CO2 Util. 2017, 20, 234–242. [Google Scholar] [CrossRef]
- Kamal, N.L.M.; Itam, Z.; Sivaganese, Y.; Razak, N.A. Carbon Dioxide Sequestered Concrete. Int. J. Integr. Eng. 2020, 12, 45–51. [Google Scholar] [CrossRef]
- Xuan, D.; Zhan, B.; Poon, C.S. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cem. Concr. Compos. 2016, 65, 67–74. [Google Scholar] [CrossRef]
- Fernández Bertos, M.; Simons, S.J.R.; Hills, C.D.; Carey, P.J. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J. Hazard. Mater. 2004, 112, 193–205. [Google Scholar] [CrossRef]
- Bukowski, J.M.; Berger, R.L. Reactivity and strength development of CO2 activated non-hydraulic calcium silicates. Cem. Concr. Res. 1979, 9, 57–68. [Google Scholar] [CrossRef]
- Haselbach, L.M.; Thomle, J.N. An alternative mechanism for accelerated carbon sequestration in concrete. Sustain. Cities Soc. 2014, 12, 25–30. [Google Scholar] [CrossRef]
- Pade, C.; Guimaraes, M. The CO2 uptake of concrete in a 100-year perspective. Cem. Concr. Res. 2007, 37, 1348–1356. [Google Scholar] [CrossRef]
- Miller, S.A.; Habert, G.; Myers, R.J.; Harvey, J.T. Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. One Earth 2021, 4, 1398–1411. [Google Scholar] [CrossRef]
- Thiery, M.; Villain, G.; Dangla, P.; Platret, G. Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics. Cem. Concr. Res. 2007, 37, 1047–1058. [Google Scholar] [CrossRef]
- Hargis, C.W.; Chen, I.A.; Devenney, M.; Fernandez, M.J.; Gilliam, R.J.; Thatcher, R.P. Calcium Carbonate Cement: A Carbon Capture, Utilization and Storage (CCUS) Technique. Materials 2021, 14, 2709. [Google Scholar] [CrossRef] [PubMed]
- Castellote, M.; Andrade, C.; Turrillas, X.; Campo, J.; Cuello, G.J. Accelerated carbonation of cement pastes in situ monitored by neutron diffraction. Cem. Concr. Res. 2008, 38, 1365–1373. [Google Scholar] [CrossRef]
- Rostami, V.; Shao, Y.; Boyd, A.J.; He, Z. Microstructure of cement paste subject to early carbonation curing. Cem. Concr. Res. 2012, 42, 186–193. [Google Scholar] [CrossRef]
- Richardson, M.G. Fundamentals of Durable Reinforced Concrete; Taylor & Francis: Abingdon, UK, 2003; ISBN 0-419-23780-1. [Google Scholar]
- Hernández-Rodríguez, A.; Orlando, A.; Montegrossi, G.; Huet, B.; Virgili, G.; Vaselli, O. Experimental analysis on the carbonation rate of Portland cement at room temperature and CO2 partial pressure from 1 to 51 bar. Cem. Concr. Compos. 2021, 124, 104271. [Google Scholar] [CrossRef]
- Liang, C.; Lu, N.; Ma, H.; Ma, Z.; Duan, Z. Carbonation behavior of recycled concrete with CO2-curing recycled aggregate under various environments. J. CO2 Util. 2020, 39, 101185. [Google Scholar] [CrossRef]
- Wang, Y.; Nanukuttan, S.; Bai, Y.; Basheer, P.A.M. Influence of combined carbonation and chloride ingress regimes on rate of ingress and redistribution of chlorides in concretes. Constr. Build. Mater. 2017, 140, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Veleva, L.; Castro, P.; Hernandez-Duque, G.; Schorr, M. The Corrosion Performance of Steel and Reinforced Concrete in a Tropical Humid Climate. a Review. Corros. Rev. 1998, 16, 235–284. [Google Scholar] [CrossRef]
- Arif, M.F.M.; Irwan, J.M.; Othman, N.; Alshalif, A.F. Carbon Dioxide (CO2) Sequestration In Bio- Concrete: An Overview. Lect. Notes Civ. Eng. 2021, 157 LNCE, 129–136. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, J.; Duan, Z. Strategies to accelerate CO2 sequestration of cement-based materials and their application prospects. Constr. Build. Mater. 2022, 314, 125646. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Andrade, C.; Mora, P.; Zaragoza, A. Carbon dioxide uptake by mortars and concretes made with Portuguese cements. Appl. Sci. 2020, 10, 646. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Meng, W. Fundamental understanding of carbonation curing and durability of carbonation-cured cement-based composites: A review. J. CO2 Util. 2021, 44, 101428. [Google Scholar] [CrossRef]
- Kwon, S.J.; Wang, X.Y. CO2 uptake model of limestone-powder-blended concrete due to carbonation. J. Build. Eng. 2021, 38, 102176. [Google Scholar] [CrossRef]
- Wang, D.; Noguchi, T.; Nozaki, T.; Higo, Y. Investigation of the carbonation performance of cement-based materials under high temperatures. Constr. Build. Mater. 2021, 272, 121634. [Google Scholar] [CrossRef]
- Pan, X.; Shi, C.; Hu, X.; Ou, Z. Effects of CO2 surface treatment on strength and permeability of one-day-aged cement mortar. Constr. Build. Mater. 2017, 154, 1087–1095. [Google Scholar] [CrossRef]
- Reis, D.C.; Quattrone, M.; Souza, J.F.T.; Punhagui, K.R.G.; Pacca, S.A.; John, V.M. Potential CO2 reduction and uptake due to industrialization and efficient cement use in Brazil by 2050. J. Ind. Ecol. 2021, 25, 344–358. [Google Scholar] [CrossRef]
- Possan, E.; Thomaz, W.A.; Aleandri, G.A.; Felix, E.F.; dos Santos, A.C.P. CO2 uptake potential due to concrete carbonation: A case study. Case Stud. Constr. Mater. 2017, 6, 147–161. [Google Scholar] [CrossRef]
- Ashraf, W. Carbonation of cement-based materials: Challenges and opportunities. Constr. Build. Mater. 2016, 120, 558–570. [Google Scholar] [CrossRef]
- Von Greve-Dierfeld, S.; Lothenbach, B.; Vollpracht, A.; Wu, B.; Huet, B.; Andrade, C.; Medina, C.; Thiel, C.; Gruyaert, E.; Vanoutrive, H.; et al. Understanding the Carbonation of Concrete with Supplementary Cementitious Materials: A Critical Review by RILEM TC 281-CCC. Mater. Struct. 2020, 53, 136. [Google Scholar] [CrossRef]
- Infante Gomes, R.; Brazão Farinha, C.; Veiga, R.; de Brito, J.; Faria, P.; Bastos, D. CO2 sequestration by construction and demolition waste aggregates and effect on mortars and concrete performance—An overview. Renew. Sustain. Energy Rev. 2021, 152. [Google Scholar] [CrossRef]
- Ji, Y.; Yuan, Y.; Shen, J.; Ma, Y.; Lai, S. Comparison of concrete carbonation process under natural condition and high CO2 concentration environments. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2010, 25, 515–522. [Google Scholar] [CrossRef]
- Lu, B.; He, P.; Liu, J.; Peng, Z.; Song, B.; Hu, X. Microstructure of Portland cement paste subjected to different CO2 concentrations and further water curing. J. CO2 Util. 2021, 53, 101714. [Google Scholar] [CrossRef]
- Kashef-Haghighi, S.; Shao, Y.; Ghoshal, S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing. Cem. Concr. Res. 2015, 67, 1–10. [Google Scholar] [CrossRef]
- Pu, Y.; Li, L.; Wang, Q.; Shi, X.; Luan, C.; Zhang, G.; Fu, L.; El-Fatah Abomohra, A. Accelerated carbonation technology for enhanced treatment of recycled concrete aggregates: A state-of-the-art review. Constr. Build. Mater. 2021, 282, 122671. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.Q.; Tang, L.P.; Dong, Z.J. XRD and 29Si MAS NMR study on carbonated cement paste under accelerated carbonation using different concentration of CO2. Mater. Today Commun. 2019, 19, 464–470. [Google Scholar] [CrossRef]
- Ho, H.J.; Iizuka, A.; Shibata, E.; Tomita, H.; Takano, K.; Endo, T. Utilization of CO2 in direct aqueous carbonation of concrete fines generated from aggregate recycling: Influences of the solid–liquid ratio and CO2 concentration. J. Clean. Prod. 2021, 312, 127832. [Google Scholar] [CrossRef]
- Qiu, Q. A state-of-the-art review on the carbonation process in cementitious materials: Fundamentals and characterization techniques. Constr. Build. Mater. 2020, 247, 118503. [Google Scholar] [CrossRef]
- Pan, X.; Shi, C.; Farzadnia, N.; Hu, X.; Zheng, J. Properties and microstructure of CO2 surface treated cement mortars with subsequent lime-saturated water curing. Cem. Concr. Compos. 2019, 99, 89–99. [Google Scholar] [CrossRef]
- Fang, Y.; Chang, J. Microstructure changes of waste hydrated cement paste induced by accelerated carbonation. Constr. Build. Mater. 2015, 76, 360–365. [Google Scholar] [CrossRef]
- Marangu, J.M.; Thiong’O, J.K.; Wachira, J.M. Review of Carbonation Resistance in Hydrated Cement Based Materials. J. Chem. 2019, 2019, 8489671. [Google Scholar] [CrossRef]
- Galan, I.; Glasser, F.P.; Baza, D.; Andrade, C. Assessment of the protective effect of carbonation on portlandite crystals. Cem. Concr. Res. 2015, 74, 68–77. [Google Scholar] [CrossRef]
- Han, S.H.; Park, W.S.; Yang, E.I. Evaluation of concrete durability due to carbonation in harbor concrete structures. Constr. Build. Mater. 2013, 48, 1045–1049. [Google Scholar] [CrossRef]
- Morandeau, A.; Thiéry, M.; Dangla, P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 2014, 56, 153–170. [Google Scholar] [CrossRef] [Green Version]
- Peter, M.A.; Muntean, A.; Meier, S.A.; Böhm, M. Competition of several carbonation reactions in concrete: A parametric study. Cem. Concr. Res. 2008, 38, 1385–1393. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, T.; Kuroda, Y. Carbon dioxide uptake in demolished and crushed concrete. J. Adv. Concr. Technol. 2011, 9, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Suescum-Morales, D.; Fernández-Rodríguez, J.M.; Jiménez, J.R. Use of carbonated water to improve the mechanical properties and reduce the carbon footprint of cement-based materials with recycled aggregates. J. CO2 Util. 2022, 57. [Google Scholar] [CrossRef]
- Šavija, B.; Luković, M. Carbonation of cement paste: Understanding, challenges, and opportunities. Constr. Build. Mater. 2016, 117, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Lagerblad, B. Carbon Dioxide Uptake during Concrete Life Cycle—State of the Art; Swedish Cement and Concrete Research Institute: Stockholm, Sweden, 2005; ISBN 9197607002. [Google Scholar]
- Guo, R.; Wang, J.; Bing, L.; Tong, D.; Ciais, P.; Davis, S.J.; Andrew, R.M.; Xi, F.; Liu, Z. Global CO2 uptake by cement from 1930 to 2019. Earth Syst. Sci. Data 2021, 13, 1791–1805. [Google Scholar] [CrossRef]
- Maage, M. Carbonation in Concrete Made of Blended Cements. Cem. Concr. Compos. 1985, 65, 193–198. [Google Scholar] [CrossRef]
- Kaliyavaradhan, S.K.; Ling, T.C.; Mo, K.H. CO2 sequestration of fresh concrete slurry waste: Optimization of CO2 uptake and feasible use as a potential cement binder. J. CO2 Util. 2020, 42, 101330. [Google Scholar] [CrossRef]
- Xi, F.; Davis, S.J.; Ciais, P.; Crawford-Brown, D.; Guan, D.; Pade, C.; Shi, T.; Syddall, M.; Lv, J.; Ji, L.; et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 2016, 9, 880–883. [Google Scholar] [CrossRef] [Green Version]
- Felix, E.F.; Possan, E. Balance emissions and CO2 uptake in concrete structures: Simulation based on the cement content and type. Rev. IBRACON Estruturas Mater. 2018, 11, 135–162. [Google Scholar] [CrossRef] [Green Version]
- Gadja, J.; Miller, F.M. Concrete as a Sink for Atmospheric Carbon Dioxide: A Literature Review and Estimation of CO2 Absorption by Portland Cement Concrete; R&D Serial N. 2255; Portland Cement Association: Skokie, IL, USA, 2000; 30p. [Google Scholar]
- Zhan, B.; Poon, C.S.; Liu, Q.; Kou, S.; Shi, C. Experimental study on CO2 curing for enhancement of recycled aggregate properties. Constr. Build. Mater. 2014, 67, 3–7. [Google Scholar] [CrossRef]
- Dodoo, A.; Gustavsson, L.; Sathre, R. Carbon implications of end-of-life management of building materials. Resour. Conserv. Recycl. 2009, 53, 276–286. [Google Scholar] [CrossRef]
- Jacobsen, S.; Jahren, P. Binding of CO2 by carbonation of Norwegian Concrete. In Proceedings of the CANMET/ACI International Symposium on Concrete Technology for Sustainable Development, Lyon, France, 23–26 October 2002. [Google Scholar]
- Lee, S.; Park, W.; Lee, H. Life cycle CO2 assessment method for concrete using CO2 balance and suggestion to decrease LCCO2 of concrete in South-Korean apartment. Energy Build. 2013, 58, 93–102. [Google Scholar] [CrossRef]
- Gajda, J. Absorption of Atmospheric Carbon Dioxide by Portland Cement Concrete; Serial Number 2255a; PCA, R&D: Chicago, IL, USA, 2001. [Google Scholar]
- Andrade, C.; Sanjuán, M.Á. Updating carbon storage capacity of Spanish cements. Sustainability 2018, 10, 4806. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.H.; Seo, E.A.; Tae, S.H. Carbonation and CO2 uptake of concrete. Environ. Impact Assess. Rev. 2014, 46, 43–52. [Google Scholar] [CrossRef]
- AzariJafari, H.; Guo, F.; Gregory, J.; Kirchain, R. Carbon uptake of concrete in the US pavement network. Resour. Conserv. Recycl. 2021, 167, 105397. [Google Scholar] [CrossRef]
- Li, P.; Shi, T.; Bing, L.; Wang, Z.; Xi, F. Calculation method and model of carbon sequestration by urban buildings: An example from Shenyang. J. Clean. Prod. 2021, 317, 128450. [Google Scholar] [CrossRef]
- Kim, T.; Chae, C.U. Evaluation analysis of the CO2 emission and absorption life cycle for precast concrete in Korea. Sustainability 2016, 8, 663. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.V.; Neves, R.; De Brito, J.; Dhir, R.K. Carbonation behaviour of recycled aggregate concrete. Cem. Concr. Compos. 2015, 62, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Purchase, C.K.; Al Zulayq, D.M.; O’brien, B.T.; Kowalewski, M.J.; Berenjian, A.; Tarighaleslami, A.H.; Seifan, M. Circular economy of construction and demolition waste: A literature review on lessons, challenges, and benefits. Materials 2022, 15, 76. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Xuan, D.; Poon, C.S. Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions. Mater. Struct. Constr. 2017, 50, 200. [Google Scholar] [CrossRef]
- Nedunuri, A.S.S.S.; yar Mohammed, A.; Muhammad, S. Carbonation potential of concrete debris fines and its valorisation through mineral carbonation. Constr. Build. Mater. 2021, 310, 125162. [Google Scholar] [CrossRef]
- Ivanica, R.; Risse, M.; Weber-Blaschke, G.; Richter, K. Development of a life cycle inventory database and life cycle impact assessment of the building demolition stage: A case study in Germany. J. Clean. Prod. 2022, 338, 130631. [Google Scholar] [CrossRef]
- Ueno, A.; Kawai, K.; Kobayashi, K.; Tanaka, S. Evaluation of visual methods for CO2 uptake by demolished concrete: Research activities by JSCE subcommittee 219. Constr. Build. Mater. 2014, 67, 393–398. [Google Scholar] [CrossRef]
- Kaddah, F.; Ranaivomanana, H.; Amiri, O.; Rozière, E. Accelerated carbonation of recycled concrete aggregates: Investigation on the microstructure and transport properties at cement paste and mortar scales. J. CO2 Util. 2022, 57, 101885. [Google Scholar] [CrossRef]
- Gomes, R.I.; Bastos, D.; Farinha, C.B.; Pederneiras, C.M.; Veiga, R.; de Brito, J.; Faria, P.; Silva, A.S. Mortars with cdw recycled aggregates submitted to high levels of CO2. Infrastructures 2021, 6, 159. [Google Scholar] [CrossRef]
- Neves Junior, A.; Toledo Filho, R.D.; De Moraes Rego Fairbairn, E.; Dweck, J. The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes. Constr. Build. Mater. 2015, 77, 448–454. [Google Scholar] [CrossRef]
- Pamenter, S.; Myers, R.J. Decarbonizing the cementitious materials cycle: A whole-systems review of measures to decarbonize the cement supply chain in the UK and European contexts. J. Ind. Ecol. 2021, 25, 359–376. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, C.; Li, Y.; Pan, X.; Poon, C.-S.; Xie, Z. Performance Enhancement of Recycled Concrete Aggregates through Carbonation. J. Mater. Civ. Eng. 2015, 27, 4015029. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, C.; Li, Y.; Pan, X.; Poon, C.S.; Xie, Z. Influence of carbonated recycled concrete aggregate on properties of cement mortar. Constr. Build. Mater. 2015, 98, 1–7. [Google Scholar] [CrossRef]
- You, K.S.; Lee, S.H.; Hwang, S.H.; Ahn, J.W. Effect of CO2 carbonation on the chemical properties of waste cement: CEC and the heavy metal adsorption ability. Mater. Trans. 2011, 52, 1679–1684. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xuan, D.; Sojobi, A.O.; Liu, S.; Poon, C.S. Efficiencies of carbonation and nano silica treatment methods in enhancing the performance of recycled aggregate concrete. Constr. Build. Mater. 2021, 308, 125080. [Google Scholar] [CrossRef]
- Xuan, D.; Poon, C.S. Sequestration of Carbon Dioxide by RCAs and Enhancement of Properties of RAC by Accelerated Carbonation; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; ISBN 9780081024805. [Google Scholar]
- Mazurana, L.; Possan, E.; Bittencourt, P. Carbonation and CO2 uptake in rendering mortars produced with recycled construction and demolition waste. In Proceedings of the CONPAT-XV Congreso Latinoamericano de Patología de la Construcción y VII Congreso de Control de Calidad en la Construcción, Tuxtla Gutiérrez, México, 8–10 October 2019. [Google Scholar] [CrossRef]
- De Oliveira Andrade, J.J.; Possan, E.; Squiavon, J.Z.; Ortolan, T.L.P. Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste. Constr. Build. Mater. 2018, 161, 70–83. [Google Scholar] [CrossRef]
Types | Type Name | Notification | Clinker | CO2,max |
---|---|---|---|---|
kg CO2/kg Cement | ||||
CEM I | Portland cement | CEM I | 95–100 | 0.49 |
CEM II | Portland slag cement | CEM II/A-S | 80–88 | 0.41–0.48 |
CEM II/B-S | 65–79 | 0.34–0.41 | ||
Portland silica fume cement | CEM II/A-D | 90–94 | 0.46–0.48 | |
Portland pozzolana cement | CEM II/A-P | 80–94 | 0.41–0.48 | |
CEM II/B-P | 65–79 | 0.34–0.41 | ||
CEM II/A-Q | 80–94 | 0.41–0.48 | ||
CEM II/B-Q | 65–79 | 0.34–0.41 | ||
Portland fly ash cement | CEM II/A-V | 80–94 | 0.41–0.48 | |
CEM II/B-V | 65–79 | 0.34–0.41 | ||
CEM II/A-W | 80–94 | 0.41–0.48 | ||
CEM II/B-W | 64–79 | 0.34–0.41 | ||
Portland burnt shale cement | CEM II/A-T | 80–94 | 0.41–0.48 | |
CEM II/B-T | 65–79 | 0.34–0.41 | ||
Portland limestone cement | CEM II/A-L | 80–94 | 0.41–0.48 | |
CEM II/B-L | 65–79 | 0.34–0.41 | ||
CEM II/A-LL | 80–94 | 0.41–0.48 | ||
CEM II/B-LL | 65–79 | 0.34–0.41 | ||
Portland composite cement | CEM II/A-M | 80–88 | 0.41–0.48 | |
CEM II/B-M | 65–79 | 0.34–0.41 | ||
CEM III | Blast furnace cement | CEM III/A | 35–64 | 0.18–0.33 |
CEM III/B | 20–34 | 0.10–0.18 | ||
CEM III/C | 5–19 | 0.03–0.10 | ||
CEM IV | Pozzolanic cement | CEM IV/A | 65–89 | 0.34–0.46 |
CEM IV/B | 45–64 | 0.23–0.33 | ||
CEM V | Composite cement | CEM V/A | 40–64 | 0.21–0.33 |
CEM V/B | 20–38 | 0.10–0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maia Pederneiras, C.; Brazão Farinha, C.; Veiga, R. Carbonation Potential of Cementitious Structures in Service and Post-Demolition: A Review. CivilEng 2022, 3, 211-223. https://doi.org/10.3390/civileng3020013
Maia Pederneiras C, Brazão Farinha C, Veiga R. Carbonation Potential of Cementitious Structures in Service and Post-Demolition: A Review. CivilEng. 2022; 3(2):211-223. https://doi.org/10.3390/civileng3020013
Chicago/Turabian StyleMaia Pederneiras, Cinthia, Catarina Brazão Farinha, and Rosário Veiga. 2022. "Carbonation Potential of Cementitious Structures in Service and Post-Demolition: A Review" CivilEng 3, no. 2: 211-223. https://doi.org/10.3390/civileng3020013
APA StyleMaia Pederneiras, C., Brazão Farinha, C., & Veiga, R. (2022). Carbonation Potential of Cementitious Structures in Service and Post-Demolition: A Review. CivilEng, 3(2), 211-223. https://doi.org/10.3390/civileng3020013