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Featured Application: The Guidelines for National Greenhouse Gas Inventories, published in 2006
by the Intergovernmental Panel on Climate Change (IPCC), provides the procedure to calculate
national GHGs emissions. However, it does not consider the net carbon dioxide emissions by
the Portland cement clinker (released by the calcination process in the clinker fabrication minus
concrete carbonation). This paper is a practical example of the net assessment to be followed.

Abstract: As the cement industry continues to address its role in the climate crisis, Portugal’s cement
industry has started to calculate its net CO2 emissions to become an entirely carbon neutral sector.
These emissions are calculated by simply subtracting the total CO2 uptake due to mortar and concrete
carbonation from the total CO2 that is emitted during the calcination process (clinker production).
However, the procedures given in the Intergovernmental Panel on Climate Change (IPCC) Guidelines
for National Greenhouse Gas (GHG) Inventories to report GHG emissions do not contain any element
that would grant this calculation method the status of an internationally recognized procedure.
Therefore, some climate models are not accurate because they do not account for the carbon dioxide
uptake due to concrete and mortar carbonation, as is evidenced in this paper. Climate models
have improved since the IPCC’s Fourth Assessment Report (AR4), but they can further improve by
implementing carbon dioxide uptake by cement-based materials. In the present paper, a quick and
easy method of evaluating net CO2 emissions is utilized (simplified method) along with an advanced
method. Portuguese net CO2 emissions of the cement produced from 2005 to 2015 were calculated
while taking carbon dioxide uptake during the service-life and end-of-life and secondary usage stages
into account. Following the simplified method, 8.7 million tons of carbon dioxide were found to be
uptake by mortars and concretes made with Portuguese cement over the ten-year period, in which
37.8 million tons were released due to the calcination process. In addition, an advanced method has
been used to estimate the carbon dioxide uptake, which provided only slightly higher results than
that of the simplified method (9.1 million tons).

Keywords: climate change; climate models; carbon dioxide uptake; carbonation; CO2 capture and
utilization; cement industry; sustainability
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1. Introduction

Concrete is a key, sustainable building material that was initiated by the modern society at the
beginning of the 21st century. Concrete helps in the development of cities, regions and countries.
Its pervasive importance is because it is possible to apply in many civil engineering and buildings uses
with a relative low cost. Long-term reinforced concrete structures such as bridges, pipes, highways,
and buildings demonstrate the indisputable high durability of this essential material and, therefore,
its sustainability.

Cement is concrete’s main constituent because is responsible for the binding of all the components,
which comprise, at least, clinker and gypsum. More sustainable cements also contain different amounts
of industrial wastes such as coal fly ash, ground granulated blast-furnace slag, and/or silica fume.
Clinker production requires the calcination of the limestone used as raw material. This reaction
produces huge amounts of carbon dioxide, which is emitted into the atmosphere. Consequently,
the reduction of these carbon dioxide emissions is paramount for a better future. On the other
hand, mortars and concretes suffer a well-known chemical reaction named carbonation, i.e., calcium
hydroxide, where C–S–H gel, ettringite, calcium aluminates, and others react with the carbon dioxide
to form calcium carbonate [1]. Thanks to this chemical reaction, it can be said that part of the carbon
dioxide emitted during the calcination process is reabsorbed by cement-based materials. Consequently,
hydrated cement can be considered a carbon sink (Figure 1). However, the current methodology
for reporting carbon dioxide emissions referred to in the Guidelines for National Greenhouse Gas
Inventories [2,3], published by the Intergovernmental Panel on Climate Change (IPCC), does not
considers the carbonation process. Therefore, carbonation is not included in national inventories.
The net carbon dioxide emissions (carbon dioxide released by calcination minus carbon dioxide uptake
by carbonation) should be calculated by the National Inventories of Greenhouse Gas Emissions in
order to have accurate data for country reporting.
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Some climate models are not accurate because they do not account for carbon dioxide uptake
due to concrete and mortar carbonation. However, they can further improve the implementation
of carbon dioxide uptake via cement-based materials. The need for such an improvement is based
on the possibility that it could facilitate the inclusion of supplementary methodologies, not only
for the sources but also for greenhouse gas (GHG) and sink effects, especially during the material’s
working life phase. Thus, it is a goal of the cement industry that the IPCC recognizes a method for
calculating this sink due to the carbonation of cement-based materials. That is why The European
Cement Association (CEMBUREAU) has promoted the creation of the concrete CO2 sink project and
has agreed to propose a methodology of the calculation of CO2 uptake [3]. According to the simplified
methodology [3], during the service life of the cement-based applications, up to 20% of the process
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emissions that are related to the production of the cement can be absorbed. In addition, after the
cement-based material’s service-life, it is sometimes recycled as secondary material, such as aggregates,
and there would therefore be an extra 3% of carbon dioxide uptake [3].

The Intergovernmental Panel on Climate Change (IPCC) recognizes the physicochemical process
of carbonation for carbon removal; nevertheless, it is currently not considered in the countries’
GHG emissions inventories. Consequently, the cement industry is working on developing an
adequate methodology in order to allow a country to calculate the CO2 removal due to concrete and
mortar carbonation.

2. CO2 Emissions by the Cement Sector

About 65% of carbon dioxide emissions of the cement sector are due to the calcination of raw
materials, mainly limestone calcination, as shown in Equation (1). The remaining 35% are emitted
by the fuel combustion. Consequently, about 3% of the global anthropogenic CO2 emissions can be
attributed to the calcination process of the raw materials produced in clinker kilns [4]. The calcium
oxide content in a clinker is 0.65 kg CaO/kg clinker; therefore, it is necessary to extract about 1.16 kg of
limestone from the earth’s surface to produce 1 kg of clinker.

CaCO3→ CaO + CO2 (1)

1 kg→ 0.56 kg + 0.44 kg

1.16 kg→ 0.65 kg + 0.51 kg

The largest source of the carbon dioxide emissions from the Portuguese cement industry is
limestone calcination (62.4%–65.4%, 2005–2015 period). The remainder is accounted for by fuel
combustion (34.6–37.6, 2005–2015 period).

The content of CaO in clinkers amounts to 65%; then, the theoretical carbon dioxide emissions by
calcination in the clinker production are 0.51 kg CO2/kg clinker. On the other hand, carbon dioxide
emissions from fuel use depend on the type of fuel (petcoke, coal, fuel oil, alternative fuels, and so on).

The global cement sector indicators in 2014, published by The International Energy Agency
(IEA) [5], showed that the cement sector was the second biggest industrial carbon dioxide emitter,
in general, and the first biggest industrial process emitter, in particular (63% CO2 process and 37%
energy-related carbon dioxide). In regard to energy use, the cement sector was the second biggest
industrial coal user and the third biggest industrial energy user (61% coal, 13% electricity, 13% oil,
9% gas, 3% wastes, and 2% biomass). Therefore, the cement industry could play a big role in lowering
carbon dioxide emissions. Particularly, carbon intensity might be reduced in several ways, such as
lowering the clinker/cement ratio, increasing energy and process efficiencies, switching to fuels with
lower carbon intensities, and carbon dioxide removal. In addition, after a period of time, part of these
carbon dioxide emissions is absorbed by cement-based materials when the physicochemical process
known as carbonation occurs. The chemistry of carbonation has been reviewed in some papers [6–8].

Carbon dioxide emissions per ton of cement have been lowered worldwide in the last few years [9].
Nevertheless, the production of cement is growing rapidly, achieving an amount of 4.65 billion tons in
2016 (Figure 2) [10]. Asia produces 80.5% of the world’s production, while Europe–CEMBUREAU only
produces 5.3%.

Figure 3 shows the gross carbon dioxide emissions for grey clinker; the emissions shown are
the direct carbon dioxide emissions, except for the on-site electricity production and the emissions
from biomass fuel. Carbon dioxide emissions due to clinker production have been reduced in the last
decade, as shown in Figure 3 [9], from more than 925 kg CO2/t clinker (North America) in 2005 to
825–850 kg CO2/t clinker in 2015. In particular, it should be highlighted that Portugal has experienced
a significant decrease from 855 kg CO2/t clinker in 2005 to 821 kg CO2/t clinker in 2015 (Figure 3).
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Figure 2. World cement production in 2016 by region and main countries (4.65 billion tons) [10].
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Additionally, it should be pointed out that the European cement industry, in general, has
considerably diminished its environmental impact [9,10]. There was also a slight decrease in CO2

emissions in several countries in the 1990–2003 period, when considering both calcination process and
fuel combustion per ton of cement, as shown in Figure 4 [11]. China, Spain, and Germany, among
others, have exhibited a significant reduction of carbon dioxide emissions as consequence of their
reduction of the clinker factor. That is, they followed a significant growing trend of blended cement
production with an upward content of additions.

This downward trend can be confirmed looking at the development of the average value. The new
climate change framework is paramount in order to maintain the current downward trend. For instance,
European standardization has promoted the use of new ternary cements with the publication of the
FprEN 197-1:2020 “Common cements – Part 1: Composition and essential characteristics”.
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Figure 4. CO2 emissions due to the process and the combustion per ton of cement in several countries
from 1990 to 2004 [11].

Five hundred million tons of carbon dioxide emissions were reported by the cement sector in 1970,
and about one thousand million tons were reported in 2000. In 2010, the original value of 1970 was
tripled. In the future, the use of carbon capture and storage (CCS) techniques in the cement sector will
be necessary to maintain CO2 emissions at a low rate [12]. Therefore, the ultimate goal of the cement
industry in regard to carbon dioxide emission levels should be about 350–400 kg CO2 per ton of cement.
This objective can be achieved by increasing the addition/clinker ratio in blended cements, by using
alternative fuels, by using non-carbonated raw materials, and by improving the energy efficiency.

On the other hand, the United Nations has established 17 Goals in order to implement the three
legs of the sustainable development in the United Nations 2030 Agenda [13], i.e., society, environment,
and economy. They are called the Sustainable Development Goals (SDGs) (Figure 5). Accordingly,
the European Union has established a set of indicators to check the SDGs in Europe [14]. In particular,
cement production can generate some environmental impacts, such as CO2 emissions. Nevertheless,
the cement-based materials use, such as mortars and concretes, has led to the improvement of
infrastructures in general, e.g., transport, water supply, and energy. Consequently, cement production
plays an enormous role in human wellbeing (society) and economic development, which are two of
the three legs of sustainable development.
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In addition, great efforts of the cement production sector in promoting sustainable development
have been acknowledged (Figure 5). Cement-based materials are essential to economic growth (Goal 8),
infrastructures (Goal 9), sanitation (Goal 6), sustainable cities (Goal 11) and climate action (Goal 13).

3. CO2 Uptake of Concrete

Carbonation is a physico-chemical process that has been extensively defined and modelled
(Figure 6) in the literature [1,4,6–8]. Figure 7 summarizes the main factors that affect the carbonation
uptake by mortars and concretes. These materials consist of a solid cement matrix that contains
aggregates, capillary pores, and air bubbles in its interior. When one wants to calculate the amount
of carbon dioxide fixed by the cement matrix, one needs to multiply the carbonation coefficient
by the square root of the time ratio. Therefore, the decreasing trend of the square-root of time is
well-known. This fact means that, after a period of time, the increase of carbon dioxide uptake is
negligible. Given that, the carbonation uptake process involves two distinct parts: (i) maximum carbon
dioxide uptake during the first twenty to fifty years and (ii) a negligible period (Figure 6). According to
Figure 6, it takes between 20 and 25 years to reach 50% of carbonation and between 70 and 80 years to
reach 90% of carbonation.
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According to EN 206 [15], the exposure classes, in regard to the corrosion that is induced by
carbonation where concrete-containing reinforcement or another embedded metal is exposed to air
and moisture, are:

• XC1: dry or permanently wet
• XC2: wet or rarely dry
• XC3: moderate humidity
• XC4: cyclic wet and dry
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On the other hand, the European standard EN 1992-1-1 (Eurocode 2) [16] deals with reinforced
concrete structure design in civil engineering works and buildings. In particular, Eurocode 2 describes
the minimum concrete cover for reinforcement, taking account the carbonation exposure class (XC), as
shown in Table 1 [16].

Table 1. Environmental requirement for minimum concrete cover (mm) according to reference [16] in
corrosion that is induced by carbonation.

Environmental Requirement for Minimum Concrete Cover (mm) Structural Class

Exposure Class: Corrosion Induced by Carbonation S1 S2 S3 S4 S5 S6

XC1—dry or permanently wet 10 10 10 15 20 25
XC2—wet or rarely dry 10 15 20 25 30 35

XC3—moderate humidity 10 15 20 25 30 35
XC4—cyclic wet and dry 15 20 25 30 35 40

Based on the simplified method [3] and the advanced method, a first study for the calculation of
CO2 uptake in a period of ten years (2005–2015) attributed to the Portuguese cements was carried out
for this paper. Carbon dioxide emissions reported by the Portuguese cement industry and provided
by the Technical Association of the Cement Industry from Portugal (ATIC) helped to estimate the
percentage of reduction of CO2 emissions due to cement-based material’s sink effect.

4. Methodology

4.1. Calculation of CO2 Uptake of Concretes and Mortars Following the Simplified Method (Tier 1)

As mentioned in [3], the amount of carbon dioxide that can be absorbed during the service life of
a product that is manufactured with cement can be calculated with a fixed conservative value by using
the simplified methodology. This value could either be 15% or 20% of the CO2 emissions, because
the process of calcination is a long way from the maximum theoretical value of carbon dioxide that
can be absorbed (around 490 kg of CO2 per ton in the case of a cement without addition, CEM I).
Regarding the CO2 uptake of concretes and mortars during the end-of-life period, it is estimated to
be 3% of the CO2 emissions due to the process of calcination [3]. Equations (2) and (3) represent
the general procedure to calculate the CO2 uptake of cement-based materials for the service life and
end-of-life stages, according to the simplified method (Tier 1). In the present study, the parameters α
and β were 0.20 and 0.03, respectively.

CO2 uptake (service life) = α × reported calcination emissions to the IPCC (2)

CO2 uptake (end-of-life) = β × reported calcination emissions to the IPCC (3)

4.2. Calculation of CO2 Uptake of Concretes and Mortars Following the Advanced Method (Tier 2)

The carbon dioxide uptake by mortars and concretes that are produced with Portuguese Portland
cements can be calculated according to Equation (4).

(CO2)uptake = C × CO2,max × DoC × (kco2
√

t/1000) × S/V (4)

where:

(CO2)uptake: carbon dioxide content uptake, kg CO2.
C: cement manufactured, kg cement.
CO2,max: maximum carbon dioxide content able to be uptake, kg CO2/kg cement.
DoC: carbonation degree, dimensionless. In this study was 0.6576.
kco2: carbonation rate, mm/year0.5.
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t: time, years.
S/V: surface per volume ratio, m2/m3.

5. Results

5.1. CO2 Uptake of Concretes Manufactured with Portuguese Cements Following the Simplified Method

Table 2 shows the summary of the Portuguese domestic data for clinker annual production, total
absolute gross CO2 emissions (without biomass emissions), and absolute gross process CO2 emissions
from cement manufacturing plants between 2005 and 2015. The theoretical uptake has been defined as
23% of all CO2 emissions due to calcination for the service life period (20%) and the end-of-life plus
secondary usage stage (2% + 1% = 3%), respectively [3]. Therefore, if a factor of 0.23 is applied to the
absolute gross process CO2 emissions shown in Table 2, this factor was proposed in the IVL simplified
methodology [3], the results that appear in Figure 8 can be obtained.

Table 2. Clinker annual production, total absolute gross CO2 emissions (without biomass emissions),
and absolute gross process CO2 emissions (kilotons) from Portuguese cement manufacturing plants
between 2005 and 2015.

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Clinker annual production
(kilotons) 7865 7777 8018 7748 6164 6484 5351 4882 5427 5968 5626

Total Absolute Gross CO2
Emissions (kilotons) (without

biomass emissions)
6722 6640 6811 6524 5075 5458 4455 4015 4393 4904 4621

Absolute Gross Process CO2
Emissions (kilotons) 4206 4141 4256 4146 3200 3471 2825 2588 2872 3162 2978
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Figure 8. Estimation of the partial absorption of carbon dioxide that is emitted due to the process
of decarbonation according to the IVL simplified methodology [3] and by applying a factor of 0.23
(20% during the service life period and 3% for the end-of-life plus secondary usage stage of the CO2

emissions due to calcination).

CO2 uptake in Portuguese cement manufacturing plants has been estimated to be 8.7 million tons
of CO2 during the period of 2005–2015.
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5.2. CO2 Uptake of Concretes Manufactured with Portuguese Cements Following the Advanced Method

Cement consumption and the end use of concretes from 2005 to 2015 are shown in Figure 9.
The key point in this methodology is the surface per volume ratio (S/V) factor selection, which depends
on the type of application. The S/V of the structural elements can be divided in several groups. The S/V
ratios used in the present study were three for civil works, eight for buildings, and 20 for mortars. It was
assumed that the full carbonation in mortar is achieved after 10–15 years of carbonation (year 2025).
The high porosity of mortars is well-known, so their carbonation rate is much higher than that of
concretes. This fact justified the assumption.
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Figure 9. Cement consumption (solid line and left-hand scale) and end use of cement in concretes (bars
and right-hand scale) from 2005 to 2015.

The carbonation rate, kco2 (mm/year0.5), can be calculated by applying Equation (5) to the
experimental results. In the present study, the carbonation rate, kco2, in concrete used in structures
was estimated from the Portuguese data shown in the literature [17,18]. Figure 10 summarizes the
experimental Portuguese results.

x = B
√

t (5)

where:

B = carbonation coefficient (mm/y0.5).
x = carbonation depth (mm).
t = time of natural carbonation (years).

The maximum stoichiometric amount of carbon dioxide that can be absorbed can be calculated by
applying Equation (6), and the results of such a calculation are shown in Table 3.

CO2,max→ (CaOreactive /100) × binder × (MCO2 /MCaO) (6)

where:

CO2,max: maximum amount of carbon dioxide that can be absorbed, kg CO2/kg cement.
CaOreactive: kg CaO/kg binder × 100. This value is taken as 65%.
Binder: Amount of cement (kg).
MCO2 : 44.0 g/mol.
MCaO: 56.1 g/mol.
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and ground granulated blast-furnace slag and (a) 251 kg/m3 of cement, w/c = 0.65; (b) 342 kg/m3 of
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Table 3. Maximum amount of carbon dioxide, CO2,max that the different EN 197-1 cements can absorb.

Main
Types

Type Name Type
Notation K 1 MAC 2 Factor

(Kcement/KCEM I)
Factor

(Kcement/KCEM I)

CO2,max

kg CO2/kg
Cement

CEM I Portland cement CEM I 95–100 0–5 95/95 = 1 1 0.49

CEM II

Portland-slag
cement

CEM II/A-S 80–88 0–5 80/95–94/95 0.84–0.99 0.41–0.48
CEM II/B-S 65–79 0–5 65/95–79/95 0.68–0.83 0.34–0.41

Portland-silica fume
cement CEM II/A-D 90–94 0–5 90/95–94/95 0.95–0.99 0.46–0.48

Portland-pozzolana
cement

CEM II/A-P 80–94 0–5 80/95–94/95 0.84–0.99 0.41–0.48
CEM II/B-P 65–79 0–5 65/95–79/95 0.68–0.83 0.34–0.41
CEM II/A-Q 80–94 0–5 80/95–94/95 0.84–0.99 0.41–0.48
CEM II/B-Q 65–79 0–5 65/95–79/95 0.68–0.83 0.34–0.41

Portland-fly ash
cement

CEM II/A-V 80–94 0–5 80/95–94/95 0.84–0.99 0.41–0.48
CEM II/B-V 65–79 0–5 65/95–79/95 0.68–0.83 0.34–0.41
CEM II/A-W 80–94 0–5 80/95–94/95 0.84–0.99 0.41–0.48
CEM II/B-W 65–79 0–5 65/95–79/95 0.68–0.83 0.34–0.41

Portland-burnt
shale cement

CEM II/A-T 80–94 0–5 80/95–94/95 0.84–0.99 0.41–0.48
CEM II/B-T 65–79 0–5 65/95–79/95 0.68–0.83 0.34–0.41

Portland-limestone
cement

CEM II/A-L 80–94 0–5 80/95–94/95 0.84–0.99 0.41–0.48
CEM II/B-L 65–79 0–5 65/95–79/95 0.68–0.83 0.34–0.41

CEM II/A-LL 80–94 0–5 80/95–94/95 0.84–0.99 0.41–0.48
CEM II/B-LL 65–79 0–5 65/95–79/95 0.68–0.83 0.34–0.41

Portland-composite
cement

CEM II/A-M 80–88 0–5 80/95–94/95 0.84–0.99 0.41–0.48
CEM II/B-M 65–79 0–5 65/95–79/95 0.68–0.83 0.34–0.41

CEM III Blast furnace
cement

CEM III/A 35–64 0–5 35/95–64/95 0.37–0.67 0.18–0.33
CEM III/B 20–34 0–5 20/95–34/95 0.21–0.36 0.10–0.18
CEM III/C 5–19 0–5 5/95–19/95 0.05–0.20 0.03–0.10

CEM IV Pozzolanic cement
CEM IV/A 65–89 0–5 65/95–89/95 0.68–0.94 0.34–0.46
CEM IV/B 45–64 0–5 45/95–64/95 0.47–0.67 0.23–0.33

CEM V Composite cement CEM V/A 40–64 0–5 40/95–64/95 0.42–0.67 0.21–0.33
CEM V/B 20–38 0–5 20/95–38/95 0.21–0.40 0.10–0.20

1 Clínker; 2 Minor additional constituents.

By applying Equation (6) to a CEM I with 95% clinker that contains 65% CaOreactive, it can be seen
that the maximum amount of carbon dioxide that can be absorbed is equal to CO2,max = (65/100) ×
0.95 × (44/56) = 0.49 kg CO2/kg CEM I. This value only applies to a cement with 95% clinker (CEM I).
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As far as other cements are concerned, this value drops in proportion to clinker content. Table 3 has
been prepared in order to rapidly display the maximum amount of carbon dioxide that the different
EN 197-1 [19] cements can absorb.

The amount of carbon dioxide that can be absorbed, in kg of concrete or of mortar, during the
service life of a material that is manufactured mainly with cement can be calculated from the input
data and following the method described in Section 4.2. For the calculation, it must be noted that the
carbonation follows a square root of time, and the carbonated depth is increasing each year following
the equation: x=k·

√
t. This means that the emissions produced in one year are incorporated into the

concrete in the following years with a decreasing trend of time.
The carbonation coefficients used in the present paper were taken from the Portuguese literature.

Nevertheless, EN 16757 [20] contains Table BB.1 to estimate the carbonation rate, kco2 (mm/year0.5)
exclusively on the basis of the concrete’s compressive strength. It is true that there is a direct relationship
between carbonation rate and concrete’s compressive strength when the correlation is determined
with the cement itself, the type of aggregates, additives, etc. However, when one of these factors is
modified, different correlations are found [21]. Therefore, it is not possible to generalize the results
compiled in Table BB.1 and to apply them to all the cements that are manufactured in Europe or for
all the environments to which concrete is exposed. According to Monteiro et al., the carbonation
coefficient for structural elements within the XC3 class (unpainted concrete) ranges from 3.33 to
4.20 mm/year0.5 [18] and is consistent with that found in the study conducted by The Eduardo Torroja
Institute of Construction Sciences - Spanish National Research Council (IETcc-CSIC) in 2010 [22].
Furthermore, the values shown in Table BB.1 (EN 16757 [20]) range from 0.50 to 16.50 mm/year0.5, i.e.,
they are greater than those found in actual Portuguese concretes that are manufactured in accordance
with EN 206 [15]. The whole amount of carbon dioxide that can be absorbed by concretes and mortars
made with Portuguese cements, consumed from 2005 to 2015, is shown in Figure 11. In addition,
the growth path of carbon dioxide uptake is represented by a growing curve for each considered
application (civil engineering, building and mortars). As expected, the higher the surface/volume (S/V)
ratio and carbonation coefficient (kco2), the higher the carbon dioxide uptake [23].Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 15 
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Figure 11. Carbon dioxide uptake (tons) considering the surface/volume (S/V) ratios of three for civil
engineering works, eight for buildings, and 20 for mortars (mortars only carbonated for ten years).
In addition, 3% of the absolute gross process CO2 emissions due to the end-of-life stage was added to
the carbon dioxide uptake reached in 2021 (green point).
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The total amount of carbon dioxide that can be absorbed by concretes and mortars made with
Portuguese cements, consumed from 2005 to 2015 while considering surface/volume (S/V) ratios of
three for civil engineering works, eight for buildings, and 20 for mortars, is shown in Figure 11. It is
assumed that the full carbonation in mortar is achieved after 10–15 years of carbonation (year 2025).

In addition, the growth path of carbon dioxide uptake is represented by a growing curve for each
considered application (civil engineering, building and mortars). As expected, the higher the S/V ratio,
the higher the carbon dioxide uptake.

In the present case, it can be observed that the carbon dioxide uptake during the ten years
production period (2005–2015) was found to go from 5.6 to 7.4 million tons from 2050 to 2100.
Consequently, the percentage of carbon dioxide uptake, considering the absolute gross process CO2

emissions, was in the range between 14.7% and 19.6% (Figure 12). Consequently, the simplified method
agrees with the carbon dioxide uptake from the origin considered in the present study until the year
2100. Nevertheless, 9.1 million tons of carbon dioxide will be uptake in the year 2121 (24.2%), when 3%
of the absolute gross process CO2 emissions due to the end-of-life stage is added to the carbon dioxide
uptake reached in 2021.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 15 
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The Intergovernmental Panel on Climate Change (IPCC) is currently in its sixth assessment cycle 
and is developing three special reports, a methodology report on national greenhouse gas inventories 
and the Sixth Assessment Report (AR6). In regard to the shortcomings in the current climate models, 
which do not consider net carbon dioxide emissions, the lead and contributing authors as well as the 
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Figure 12. Carbon dioxide uptake, i.e., carbon dioxide absorbed by cement-based materials consumed
from 2005 to 2015 related to the absolute gross process CO2 emissions (t) produced from 2005 to 2015
for surface/volume (S/V) ratios of three for civil engineering works, eight for buildings, and 20 for
mortars (mortars only carbonated for ten years); 3% of the absolute gross process CO2 emissions due to
the end-of-life stage was added to the carbon dioxide uptake reached in 2021 (green bar).

Figure 12 shows the carbon dioxide uptake that was calculated by dividing the accumulated yearly
absorption by the absolute gross process CO2 emissions; this is expressed in percentage. This figure
represents the results obtained for the main applications of cement-based products (civil engineering
works, buildings, and mortars). As result of the sharp decrease of the cement consumption from 2005
(8.705.000 tons) to 2010 (5.803.000 tons) and to the end of the investigation period, 2015 (2.745.000 tons),
the relative uptake is lower as shown in Figure 12.

Comparing the results that were obtained by applying the simplified and advanced methods, it a
good agreement in general is evident. However, the advanced methods allowed for a more realistic
calculation and, therefore, higher results were found when using them. As such, the 8.7 million tons
found when using the simplified method became 9.1 million tons when using the advanced method
proposed in the present paper. Consequently, the use of advanced methods is recommended in order
to get more accurate results to be used as input data in the climate models that are developed within
the IPPC’s assessment report context.
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Figure 13 shows the net carbon dioxide emissions by final use of the mortars, building and civil
works cement consumed in Portugal from 2005 to 2015. As expected, mortars carbonated very quickly,
whereas civil works concretes carbonated very slowly. Consequently, the carbon dioxide uptake
performed by mortars reached about 95% in ten years. On the contrary, after one hundred years of
carbonation, civil works and building concretes only reached 6.6% and 26.0%, respectively.
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Figure 13. Net carbon dioxide emissions by final use (mortars, building and civil works). Carbon dioxide
uptake from 2005 to 2021 in regard to the carbon dioxide released from 2005 to 2015 (%).

The Intergovernmental Panel on Climate Change (IPCC) is currently in its sixth assessment cycle
and is developing three special reports, a methodology report on national greenhouse gas inventories
and the Sixth Assessment Report (AR6). In regard to the shortcomings in the current climate models,
which do not consider net carbon dioxide emissions, the lead and contributing authors as well as the
review editors strongly encourage the improvement of such models by implementing the actual impact
of the Portland cement sector, i.e., including the net carbon dioxide emissions by the Portland cement
clinker (released by the calcination process in the clinker fabrication minus the carbon dioxide uptake
by mortars and concrete carbonation).

6. Conclusions

The conclusions reached with this study are as follows:

• The total amount of carbon dioxide that can be absorbed by concretes and mortars made with
Portuguese cements, consumed from 2005 to 2015, was found to go from 5.6 to 7.4 million tons
from 2050 to 2100 when considering the surface/volume ratios of three for civil engineering works,
eight for buildings, and 20 for mortars. Thus, the percentage of carbon dioxide uptake, considering
the absolute gross process CO2 emissions, is in the range between 14.8% and 19.6%. Consequently,
the simplified method agrees with the carbon dioxide uptake from the origin considered in the
present study until the year 2100. Nevertheless, 9.1 million tons of carbon dioxide will be uptake in
the year 2121 (24.2%), when 3% of the absolute gross process CO2 emissions due to the end-of-life
stage is added to the carbon dioxide uptake reached in 2021.

• In the period of 2005–2015, CO2 absorption from Portuguese cements was estimated at 8.7 million
tons of CO2 when using the simplified methodology and applying a factor of 0.23 (20% for service
life and 3% for the end-of-life plus secondary usage stage), which is what is proposed in the IVL
simplified methodology.
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• Mortar’s carbon dioxide uptake was about 95% in ten years. However, civil works and building
concretes only reached 6.6% and 26.0% after one hundred years of carbonation, respectively.

• As expected, short carbonation periods provide a low carbon dioxide uptake. Therefore, actual
service-life periods should be considered in order to assess the whole process. In addition,
the great influence of the S/V ratio on carbon dioxide uptake make this a key factor in this
advanced methodology

• In regard to the shortcomings in the current climate models, which do not consider the net
carbon dioxide emission (released by the calcination process in the clinker fabrication minus
concrete carbonation) attributed to the Portland cement clinker production, IPCC authors are
strongly encouraged to improve their climate models adding the aforementioned net carbon
dioxide emissions.
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