The Use of Virtual Reality in Surgical Training: Implications for Education, Patient Safety, and Global Health Equity
Abstract
:1. Introduction
2. Potential Benefits of VR in Surgical Training
2.1. The Impact of Digital Learning Tools on Surgical Education: A Review
2.2. The Potential of Virtual Reality in the Improvement in Patient Safety
2.3. The Role of VR in Remote Learning
2.4. VR Can Impact Global Health by Addressing Challenges with Surgical Training Access
2.5. The Use of VR Can Foster Continuity of Care and Training
3. Potential Risks of VR in Surgical Training
3.1. Limitations of Virtual Reality in Simulating Surgical Cases
3.2. Users Will Need to Get Accustomed to VR Technology to Maximize Their Learning Experience
3.3. VR Supplementation with Additional Learning Methods and Tools
3.4. The Implementation of VR in Low- and Middle-Income Countries Can Face Financial Barriers
3.5. VR Technology Requires Stable Internet Connectivity, and Lack Thereof May Preclude Equitable Implementation
4. Future Directions: Avenues to Improve Currently Existing Virtual Reality Models and Increase Their Applicability
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pal, D.; Taywade, M.; Gopi, K. Experiential learning: How pedagogy is changing in medical education. Curr. Med. Issues 2022, 20, 198–200. [Google Scholar]
- Guze, P.A. Using Technology to Meet the Challenges of Medical Education. Trans. Am. Clin. Climatol. Assoc. 2015, 126, 260–270. [Google Scholar] [PubMed]
- Pottle, J. Virtual reality and the transformation of medical education. Future Health J. 2019, 6, 181–185. [Google Scholar] [CrossRef]
- Kassabry, M.F. Evaluation of simulation using objective structured clinical examination (OSCE) among undergraduate nursing students: A systematic review. Int. J. Afr. Nurs. Sci. 2023, 18, 100553. [Google Scholar] [CrossRef]
- Aggarwal, R.; Mytton, O.T.; Derbrew, M.; Hananel, D.; Heydenburg, M.; Issenberg, B.; MacAulay, C.; Mancini, M.E.; Marimoto, T.; Soper, N.; et al. Training and simulation for patient safety. Qual. Saf. Health Care 2010, 19 (Suppl. S2), 34–43. [Google Scholar] [CrossRef]
- LaVelle, B.A.; McLaughlin, J.J. Simulation-Based Education Improves Patient Safety in Ambulatory Care. In Advances in Patient Safety: New Directions and Alternative Approaches (Vol. 3: Performance and Tools); Agency for Healthcare Research and Quality: Rockville, MD, USA, 2008. [Google Scholar]
- Ntakakis, G.; Plomariti, C.; Frantzidis, C.; Antoniou, P.E.; Bamidis, P.D.; Tsoulfas, G. Exploring the use of virtual reality in surgical education. World J. Transplant. 2023, 13, 36. [Google Scholar] [CrossRef]
- Bowen, K.; Barry, M.; Jowell, A.; Maddah, D.; Alami, N.H. Virtual Exchange in Global Health: An innovative educational approach to foster socially responsible overseas collaboration. Int. J. Educ. Technol. High. Educ. 2021, 18, 1–11. [Google Scholar] [CrossRef]
- Hill, E.; Gurbutt, D.; Makuloluwa, T.; Gordon, M.; Georgiou, R.; Roddam, H.; Seneviratne, S.; Byrom, A.; Pollard, K.; Abhayasinghe, K.; et al. Collaborative healthcare education programmes for continuing professional education in low and middle-income countries: A Best Evidence Medical Education (BEME) systematic review. BEME Guide No. 65. Med. Teach. 2021, 43, 1228–1241. [Google Scholar] [CrossRef]
- Dhar, E.; Upadhyay, U.; Huang, Y.; Uddin, M.; Manias, G.; Kyriazis, D.; Wajid, U.; AlShawaf, H.; Abdul, S.S. A scoping review to assess the effects of virtual reality in medical education and clinical care. Digit. Health 2023, 9, 20552076231158022. [Google Scholar] [CrossRef]
- Kantar, R.S.; Alfonso, A.R.; Ramly, E.P.; Cohen, O.; Rifkin, W.J.; Maliha, S.G.; Diaz-Siso, J.R.; Eisemann, B.S.; Saadeh, P.B.; Flores, R.L. Knowledge and Skills Acquisition by Plastic Surgery Residents through Digital Simulation Training: A Prospective, Randomized, Blinded Trial. Plast. Reconstr. Surg. 2020, 145, 184e–192e. [Google Scholar] [CrossRef]
- Rad, A.A.; Vardanyan, R.; Lopuszko, A.; Alt, C.; Stoffels, I.; Schmack, B.; Ruhparwar, A.; Zhigalov, K.; Zubarevich, A.; Weyman, A. Virtual and Augmented Reality in Cardiac Surgery. Braz J. Cardiovasc. Surg. 2022, 37, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Letterie, G.S. How virtual reality may enhance training in obstetrics and gynecology. Am. J. Obs. Gynecol. 2002, 187, S37–S40. [Google Scholar] [CrossRef] [PubMed]
- Sonnier, D.; Peter Sawyer, W.; Seal, J.; Curtis, C.; McGee, J.; Slayden, A.; Sarkar, K. Three-Dimensional Visualization with Virtual Reality Facilitates Complex Live Donor Renal Transplant. Ochsner J. 2022, 22, 344–348. [Google Scholar] [CrossRef]
- Frankiewicz, M.; Vetterlein, M.W.; Matuszewski, M. VR, reconstructive urology and the future of surgery education. Nat. Rev. Urol. 2023, 20, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Iserson, K.V. Ethics of Virtual Reality in Medical Education and Licensure. Camb. Q. Healthc. Ethics 2018, 27, 326–332. [Google Scholar] [CrossRef]
- Caruso, C.C. Negative impacts of shiftwork and long work hours. Rehabil. Nurs. 2014, 39, 16–25. [Google Scholar] [CrossRef]
- Speirs, C.; Brazil, V. See one, do one, teach one: Is it enough? No. EMA—Emerg. Med. Australas. 2018, 30, 109–110. [Google Scholar] [CrossRef]
- Ulmer, C.; Wolman, D.M.; Johns, M.M.E. Resident Duty Hours: Enhancing Sleep, Supervision, and Safety; The National Academic Press: Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- Rothschild, J.M.; Landrigan, C.P.; Cronin, J.W.; Kaushal, R.; Lockley, S.W.; Burdick, E.; Stone, P.H.; Lilly, C.M.; Katz, J.T.; Czeisler, C.A.; et al. The Critical Care Safety Study: The incidence and nature of adverse events and serious medical errors in intensive care. Crit. Care Med. 2005, 33, 1694–1700. [Google Scholar] [CrossRef]
- Mazur, L.M.; Khasawneh, A.; Fenison, C.; Buchanan, S.; Kratzke, I.M.; Adapa, K.; An, S.J.; Butler, L.; Zebrowsky, A.; Chakravarthula, P.; et al. A Novel Theory-Based Virtual Reality Training to Improve Patient Safety Culture in the Department of Surgery of a Large Academic Medical Center: Protocol for a Mixed Methods Study. JMIR Res. Protoc. 2022, 11, e40445. [Google Scholar] [CrossRef]
- Ahlberg, G.; Enochsson, L.; Gallagher, A.G.; Hedman, L.; Hogman, C.; McClusky, D.A.; Ramel, S.; Arvidsson, D. Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am. J. Surg. 2007, 193, 797–804. [Google Scholar] [CrossRef]
- Seymour, N.E. VR to OR: A review of the evidence that virtual reality simulation improves operating room performance. World J. Surg. 2008, 32, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Walbron, P.; Common, H.; Thomazeau, H.; Hosseini, K.; Peduzzi, L.; Bulaid, Y.; Sirveuax, F. Virtual reality simulator improves the acquisition of basic arthroscopy skills in first-year orthopedic surgery residents. Orthop. Traumatol. Surg. Res. 2020, 106, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Lohre, R.; Bois, A.J.; Pollock, J.W.; Lapner, P.; McIlquham, K.; Athwal, G.S.; Goel, D.P. Effectiveness of Immersive Virtual Reality on Orthopedic Surgical Skills and Knowledge Acquisition among Senior Surgical Residents: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2031217. [Google Scholar] [CrossRef] [PubMed]
- Atli, K.; Selman, W.; Ray, A. A Comprehensive Multicomponent Neurosurgical Course with use of Virtual Reality: Modernizing the Medical Classroom. J. Surg. Educ. 2021, 78, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, A.S.S.; Bach-Holm, D.; Kjærbo, H.; Højgaard-Olsen, K.; Subhi, Y.; Saleh, G.M.; Park, Y.S.; la Cour, M.; Konge, L. Operating Room Performance Improves after Proficiency-Based Virtual Reality Cataract Surgery Training. Ophthalmology 2017, 124, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, J.G.; Sørensen, S.M.D.; Konge, L.; Svendsen, M.B.S.; Nobel-Jørgensen, M.; Bjerrum, F.; Andersen, S.A.W. Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: A randomized trial. Surg. Endosc. 2020, 34, 1244–1252. [Google Scholar] [CrossRef]
- Mao, R.Q.; Lan, L.; Kay, J.; Lohre, R.; Ayeni, O.R.; Goel, D.P.; de Sa, D. Immersive Virtual Reality for Surgical Training: A Systematic Review. J. Surg. Res. 2021, 268, 40–58. [Google Scholar] [CrossRef]
- Pallavicini, F.; Pepe, A.; Clerici, M.; Mantovani, F. Virtual Reality Applications in Medicine During the COVID-19 Pandemic: Systematic Review. JMIR Serious Games 2022, 10, e35000. [Google Scholar] [CrossRef]
- Sommer, G.M.; Broschewitz, J.; Huppert, S.; Sommer, C.G.; Jahn, N.; Jansen-Winkeln, B.; Gockel, I.; Hau, H. The role of virtual reality simulation in surgical training in the light of COVID-19 pandemic Visual spatial ability as a predictor for improved surgical performance: A randomized trial. Medicine 2021, 100. [Google Scholar] [CrossRef]
- Mishra, R.; Narayanan, K.; Umana, G.E.; Montemurro, N.; Chaurasia, B.; Deora, H. Virtual Reality in Neurosurgery: Beyond Neurosurgical Planning. Int. J. Environ. Res. Public Health 2022, 19, 1719. [Google Scholar] [CrossRef]
- Arora, A.; Lau, L.Y.M.; Awad, Z.; Darzi, A.; Singh, A.; Tolley, N. Virtual reality simulation training in Otolaryngology. Int. J. Surg. 2014, 12, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Dawe, S.R.; Pena, G.N.; Windsor, J.A.; Broeders, J.A.J.L.; Cregan, P.C.; Hewett, P.J.; Maddern, G.J. Systematic review of skills transfer after surgical simulation-based training. Br. J. Surg. 2014, 101, 1063–1076. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Awuah, W.A.; Aborode, A.T.; Ng, J.C.; Candelario, K.; Vieira, I.M.P.; Bulut, H.I.; Toufik, A.R.; Hasan, M.M.; Sikora, V. Telesurgery’s potential role in improving surgical access in Africa. Ann. Med. Surg. 2022, 82, 104511. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, S.; Singh, B.; Van Wyk, J.M. Student perceptions of an online surgical teaching programme during the COVID-19 pandemic at the University of KwaZulu-Natal: A short report. Afr. J. Health Prof. Educ. 2022, 14, 152–154. [Google Scholar] [CrossRef]
- Owolabi, E.O.; Mac Quene, T.; Louw, J.; Davies, J.I.; Chu, K.M. Telemedicine in Surgical Care in Low- and Middle-Income Countries: A Scoping Review. World J. Surg. 2022, 46, 1855–1869. [Google Scholar] [CrossRef] [PubMed]
- Frimpong-Boateng, K.; Edwin, F. Surgical leadership in Africa—Challenges and opportunities. Innov. Surg. Sci. 2019, 4, 56–64. [Google Scholar] [CrossRef]
- Talib, Z.; Narayan, L.; Harrod, T. Postgraduate Medical Education in Sub-Saharan Africa: A Scoping Review Spanning 26 Years and Lessons Learned. J. Grad. Med. Educ. 2019, 11, 34–46. [Google Scholar] [CrossRef]
- Watters, D.; Bayley, A.C. Training doctors and surgeons to meet the surgical needs of Africa. Br. Med. J. (Clin. Res. Ed.) 1987, 295, 761–763. [Google Scholar] [CrossRef]
- Stoehr, J.R.; Chappell, A.G.; Hassan, A.; Nthumba, P.; Salyapongse, A.N. Plastic Surgery across Continents: A Comparison of Residency Training in Subsaharan Africa and the United States. Ann. Plast. Surg. 2021, 87, 3–11. [Google Scholar] [CrossRef]
- Din, N.; Chan, C.C.; Cohen, E.; Iovieno, A.; Dahan, A.; Rootman, D.S.; Litvin, G. Remote Surgeon Virtual Presence: A Novel Telementoring Method for Live Surgical Training. Cornea 2022, 41, 385. [Google Scholar] [CrossRef]
- Kim, S.; Yun, J.H. Motion-aware interplay between wigig and wifi for wireless virtual reality. Sensors 2020, 20, 6782. [Google Scholar] [CrossRef] [PubMed]
- Gokcen, E. Sustainable Orthopaedic Surgery Residency Training in East Africa: A 10-Year Experience in Kenya. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2019, 3. [Google Scholar] [CrossRef] [PubMed]
- Botman, M.; Hendriks, T.C.C.; Keetelaar, A.J.; Smit, F.T.C.; Terwee, C.B.; Hamer, M.; Nuwass, S.; Jaspers, M.E.H.; Winters, H.A.H.; Corlew, S. From short-term surgical missions towards sustainable partnerships. A survey among members of foreign teams. Int. J. Surg. Open 2021, 28, 63–69. [Google Scholar] [CrossRef]
- Hendriks, T.C.C.; Botman, M.; Rahmee, C.N.S.; Ket, J.C.F.; Mullender, M.G.; Gerretsen, B.; Nuwass, E.Q.; Marck, K.W.; Winters, H.A.W. Impact of short-term reconstructive surgical missions: A systematic review. BMJ Glob. Health 2019, 4, e001176. [Google Scholar] [CrossRef] [PubMed]
- Roby, B.B.; Taufique, Z.; Redmann, A.; Jayawardena, A.D.L.; Chinnadurai, S. Ethical Dilemmas in Surgical Mission Trips During the COVID-19 Pandemic. Otolaryngol. Head Neck Surg. 2022, 166, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Caldron, P.H.; Impens, A.; Pavlova, M.; Groot, W. A systematic review of social, economic and diplomatic aspects of short-term medical missions. BMC Health Serv. Res. 2015, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sykes, K.J. Short-term medical service trips: A systematic review of the evidence. Am. J. Public Health 2014, 104, e38–e48. [Google Scholar] [CrossRef]
- Huerta, S.; Huchim-Peña, C.J.; Ta, T.; Quiñones, M.E.; Mendoza, J.A.; Corzo, V.F.; Ortiz, C. Patients’, local staff, and medical students’ perceptions on a medical mission trip to Guatemala. Curr. Probl. Surg. 2023, 60, 101378. [Google Scholar] [CrossRef]
- Kapoor, S.; Arora, P.; Kapoor, V.; Jayachandran, M.; Tiwari, M. Haptics—Touchfeedback technology widening the horizon of medicine. J. Clin. Diagn. Res. 2014, 8, 294. [Google Scholar] [CrossRef]
- Kannangara, S.M.; Fernando, E.; Nanayakkara, N.D.; Kumarage, S.K. Evaluating effects of haptic feedback in Virtual Reality simulators for laparoscopic skill development. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics 2016, Singapore, 26–29 June 2016. [Google Scholar]
- Jerabkova, L.; Wolter, T.P.; Pallua, N.; Kuhlen, T. Adaptive soft tissue deformation for a virtual reality surgical trainer. Stud. Health Technol. Inform. 2005, 111, 219–222. [Google Scholar]
- Wu, H.; Yu, H.; Ye, F.; Sun, J.; Gao, Y.; Tan, K.; Hao, A. Interactive Hepatic Parenchymal Transection Simulation with Haptic Feedback. Virtual Real. Intell. Hardw. 2021, 3, 383–396. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Köppinger, K.F.; Fan, C.; Kowalewski, K.F.; Schmidt, L.P.; Vey, J.; Proctor, T.; Probst, P.; Bintintan, V.V.; Muller-Stitch, B.P.; et al. Virtual reality simulation in robot-assisted surgery: Meta-analysis of skill transfer and predictability of skill. BJS Open 2021, 5, zraa066. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, Ö.; Erer, E.; Erer, D. Internet access and its role on educational inequality during the COVID-19 pandemic. Telecomm. Policy 2022, 46, 102353. [Google Scholar] [CrossRef] [PubMed]
- Frehywot, S.; Vovides, Y.; Talib, Z.; Mikhail, N.; Ross, H.; Wohltjen, H.; Bedada, S.; Korhumel, K.; Koumare, A.B.; Scott, J. E-learning in medical education in resource constrained low- and middle-income countries. Hum. Resour. Health 2013, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.; Ferrè, E.R. Cybersickness: A Multisensory Integration Perspective. Multisensory Res. 2018, 31, 645–674. [Google Scholar] [CrossRef] [PubMed]
- Baniasadi, T.; Ayyoubzadeh, S.M.; Mohammadzadeh, N. Challenges and practical considerations in applying virtual reality in medical education and treatment. Oman Med. J. 2020, 35, e125. [Google Scholar] [CrossRef]
- Stanney, K.M.; Kingdon, K.S.; Graeber, D.; Kennedy, R.S. Human performance in immersive virtual environments: Effects of exposure duration, user control, and scene complexity. Hum. Perform. 2002, 15, 339–366. [Google Scholar] [CrossRef]
- Moss, J.D.; Austin, J.; Salley, J.; Coats, J.; Williams, K.; Muth, E.R. The effects of display delay on simulator sickness. Displays 2011, 32, 159–168. [Google Scholar] [CrossRef]
- Liu, C.L. A study of detecting and combating cybersickness with fuzzy control for the elderly within 3D virtual stores. Int. J. Hum. Comput. Stud. 2014, 72, 796–804. [Google Scholar] [CrossRef]
- Stanney, K.M.; Kennedy, R.S. Aftereffects from virtual environment exposure: How long do they last? Proc. Hum. Factors Ergon. Soc. 1998, 42, 1476–1480. [Google Scholar] [CrossRef]
- Han, K.; Park, C.; Kim, E.; Kim, D.; Woo, S.; Jeong, J.; Hwang, I.; Kim, H. Effects of Different Types of 3D Rest Frames on Reducing Cybersickness in a Virtual Environment. I-Perception 2011, 2, 861. [Google Scholar] [CrossRef]
- Cevette, M.J.; Stepanek, J.; Cocco, D.; Galea, A.M.; Pradhan, G.N.; Wagner, L.S.; Oakley, S.R.; Smith, B.E.; Zapala, D.A.; Brookler, K.E. Oculo-Vestibular Recoupling Using Galvanic Vestibular Stimulation to Mitigate Simulator Sickness. Aviat. Space Environ. Med. 2012, 83, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Haluck, R.S.; Krummel, T.M. Computers and virtual reality for surgical education in the 21st century. Arch. Surg. 2000, 135, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Hasan, L.K.; Haratian, A.; Kim, M.; Bolia, I.K.; Weber, A.E.; Petrigliano, F.A. Virtual reality in orthopedic surgery training. Adv. Med. Educ. Pract. 2021, 12, 1295–1301. [Google Scholar] [CrossRef]
- Seymour, N.E.; Røtnes, J.S. Challenges to the development of complex virtual reality surgical simulations. Surg. Endosc. Other Interv. Tech. 2006, 20, 1774–1777. [Google Scholar] [CrossRef]
- Chaya, B.F.; Laspro, M.; Verzella, A.N.; Oliker, A.; Arnold, A.; Alcon, A.; Flores, R.L. Internet-based Digital Simulation for Cleft Surgery Education: A 10-year Assessment of Demographics, Usage, and Future Directions. Plast. Reconstr. Surg. Glob. Open 2023, 11, e5300. [Google Scholar] [CrossRef]
- Bagchi, K.; Kirs, P.; López, F. The impact of price decreases on telephone and cell phone diffusion. Inf. Manag. 2008, 45, 183–193. [Google Scholar] [CrossRef]
- Nepogodiev, D.; Martin, J.; Biccard, B.; Makupe, A.; Bhangu, A. Global burden of postoperative death. Lancet 2019, 393, 401. [Google Scholar] [CrossRef]
- Lakshminarayanan, V.; Ravikumar, A.; Chattu, V.K.; Sriraman, H.; Alla, S. Health Care Equity Through Intelligent Edge Computing and Augmented Reality/Virtual Reality: A Systematic Review. J. Multidiscip. Healthc. 2023, 16, 2839–2859. [Google Scholar] [CrossRef]
- Cullinan, J.; Flannery, D.; Harold, J.; Lyons, S.; Palcic, D. The disconnected: COVID-19 and disparities in access to quality broadband for higher education students. Int. J. Educ. Technol. High. Educ. 2021, 18, 26. [Google Scholar] [CrossRef]
- United Nations International Telecommunication Union. Global Connectivity Report; United Nations International Telecommunication Union: Geneva, Switzerland, 2022. [Google Scholar]
- Kantar, R.S.; Plana, N.M.; Cutting, C.B.; Diaz-Siso, J.R.; Flores, R.L. Internet-Based Digital Simulation for Cleft Surgery Education: A 5-Year Assessment of Demographics, Usage, and Global Effect. J. Surg. Educ. 2018, 75, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Tørring, B.; Gittell, J.H.; Laursen, M.; Rasmussen, B.S.; Sørensen, E.E. Communication and relationship dynamics in surgical teams in the operating room: An ethnographic study. BMC Health Serv. Res. 2019, 19, 528. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.Y.; Arriaga, A.F.; Peyre, S.E.; Corso, K.A.; Roth, E.M.; Greenberg, C.C. Deconstructing intraoperative communication failures. J. Surg. Res. 2012, 177, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Greenky, D.; Reddy, P.; George, P. Rethinking the Initial Board Certification Exam. Med. Sci. Educ. 2021, 31, 889–891. [Google Scholar] [CrossRef]
- Reinschluessel, A.V.; Muender, T.; Salzmann, D.; Döring, T.; Malaka, R.; Weyhe, D. Virtual Reality for Surgical Planning—Evaluation Based on Two Liver Tumor Resections. Front. Surg. 2022, 9, 821060. [Google Scholar] [CrossRef]
Patient safety |
Opportunity to make mistakes |
Global health outreach |
Remote learning |
Mentorship opportunities |
Improved longitudinal training |
Assessment of trainee competencies |
Financial barriers |
Decreased human interaction |
Imperfect fidelity |
Access to internet connectivity |
Possible potentiation of educational inequity |
No interaction between intraoperative team members |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laspro, M.; Groysman, L.; Verzella, A.N.; Kimberly, L.L.; Flores, R.L. The Use of Virtual Reality in Surgical Training: Implications for Education, Patient Safety, and Global Health Equity. Surgeries 2023, 4, 635-646. https://doi.org/10.3390/surgeries4040061
Laspro M, Groysman L, Verzella AN, Kimberly LL, Flores RL. The Use of Virtual Reality in Surgical Training: Implications for Education, Patient Safety, and Global Health Equity. Surgeries. 2023; 4(4):635-646. https://doi.org/10.3390/surgeries4040061
Chicago/Turabian StyleLaspro, Matteo, Leya Groysman, Alexandra N. Verzella, Laura L. Kimberly, and Roberto L. Flores. 2023. "The Use of Virtual Reality in Surgical Training: Implications for Education, Patient Safety, and Global Health Equity" Surgeries 4, no. 4: 635-646. https://doi.org/10.3390/surgeries4040061
APA StyleLaspro, M., Groysman, L., Verzella, A. N., Kimberly, L. L., & Flores, R. L. (2023). The Use of Virtual Reality in Surgical Training: Implications for Education, Patient Safety, and Global Health Equity. Surgeries, 4(4), 635-646. https://doi.org/10.3390/surgeries4040061