A Study of the Inclusion Complex Formed Between Cucurbit[8]uril and N,4-Di(pyridinyl)benzamide Derivative
Abstract
:1. Introduction
2. Materials and Methods
- Synthesis of compound PB2+
- Nuclear magnetic resonance measurements.
- UV–vis absorption.
- Isothermal titration calorimetry (ITC) experiments.
- High-resolution electrospray mass spectrometer (HR ESI–MS).
- Quantum chemistry calculations.
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, H.; Yuan, B.; Zhang, X.; Scherman, O.A. Supramolecular Chemistry at Interfaces: Host-Guest Interactions for Fabricating Multifunctional Biointerfaces. Acc. Chem. Res. 2014, 47, 2106–2115. [Google Scholar] [CrossRef]
- Ghale, G.; Nau, W.M. Dynamically Analyte-Responsive Macrocyclic Host-Fluorophore Systems. Acc. Chem. Res. 2014, 47, 2150–2159. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-X.; Chen, K.; Redshaw, C. Stimuli-responsive mechanically interlocked molecules constructed from cucurbit[n]uril homologues and derivatives. Chem. Soc. Rev. 2023, 52, 1428–1455. [Google Scholar] [CrossRef] [PubMed]
- Shetty, D.; Khedkar, J.K.; Park, K.M.; Kim, K. Can we beat the biotin-avidin pair: Cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications. Chem. Soc. Rev. 2015, 44, 8747–8761. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, C.; Yang, K.; Chen, X.; Wang, R. Cucurbituril-Based Supramolecular Polymers for Biomedical Applications. Angew. Chem. Int. Edit. 2022, 61, e202206763. [Google Scholar] [CrossRef]
- Nie, H.; Wei, Z.; Ni, X.-L.; Liu, Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem. Rev. 2022, 122, 9032–9077. [Google Scholar] [CrossRef]
- Guan, W.-L.; Chen, J.-F.; Liu, J.; Shi, B.; Yao, H.; Zhang, Y.M.; Wei, T.-B.; Lin, Q. Macrocycles-assembled AIE supramolecular polymer networks. Coordin. Chem. Rev. 2024, 507, 215717. [Google Scholar] [CrossRef]
- Ziganshina, A.Y.; Ko, Y.H.; Jeon, W.S.; Kim, K. Stable π-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit[8]uril. Chem. Commun. 2004, 7, 806–807. [Google Scholar] [CrossRef]
- Ni, X.-L.; Chen, S.; Yang, Y.; Tao, Z. Facile Cucurbit[8]uril-Based Supramolecular Approach To Fabricate Tunable Luminescent Materials in Aqueous Solution. J. Am. Chem. Soc. 2016, 138, 6177–6183. [Google Scholar] [CrossRef]
- Rabbani, R.; Masson, E. Probing Interactions between Hydrocarbons and Auxiliary Guests inside Cucurbit[8]uril. Org. Lett. 2017, 19, 4303–4306. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Z.; Ma, X.; Tian, H. Visible-Light-Excited Room-Temperature Phosphorescence in Water by Cucurbit[8]uril-Mediated Supramolecular Assembly. Angew. Chem. Int. Edit. 2020, 59, 9928–9933. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.; Chang, S.L.; Clements, N.; Hirani, Z.; Kimberly, L.B.; Odoi-Adams, K.; Suating, P.; Taylor, H.F.; Trauth, S.A.; Urbach, A.R. Molecular recognition of peptides and proteins by cucurbit[n]urils: Systems and applications. Chem. Soc. Rev. 2024, 53, 11519–11556. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.-K.; Zhang, W.; Liu, Z.; Zhang, H.; Zhang, B.; Liu, Y. Supramolecular Pins with Ultralong Efficient Phosphorescence. Adv. Mater. 2021, 33, 2007476. [Google Scholar] [CrossRef]
- Yang, B.; Yu, S.-B.; Zhang, P.-Q.; Wang, Z.-K.; Qi, Q.-Y.; Wang, X.-Q.; Xu, X.-H.; Yang, H.-B.; Wu, Z.-Q.; Liu, Y.; et al. Self-Assembly of a Bilayer 2D Supramolecular Organic Framework in Water. Angew. Chem. Int. Edit. 2021, 60, 26268–26275. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Xu, Y.; Wang, S.; Pang, Q.; Liu, S. Metal-organic rotaxane frameworks constructed from a cucurbit[8]uril-based ternary complex for the selective detection of antibiotics. Chem. Commun. 2023, 59, 5890–5893. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, R.-Z.; Han, N.; Liu, H.; Xing, L.-B. Supramolecular organic framework nanosheets for efficient singlet oxygen generation: A multilevel energy transfer approach for photocatalytic Minisci reactions. J. Mater. Chem. A. 2025, 13, 13789–13796. [Google Scholar] [CrossRef]
- Li, Y.; Yan, C.; Li, Q.; Cao, L. Successive construction of cucurbit[8]uril-based covalent organic frameworks from a supramolecular organic framework through photochemical reactions in water. Sci. China Chem. 2022, 65, 1279–1285. [Google Scholar] [CrossRef]
- Yan, C.; Li, Q.; Miao, X.; Zhao, Y.; Li, Y.; Wang, P.; Wang, K.; Duan, H.; Zhang, L.; Cao, L. Chiral Adaptive Induction of an Achiral Cucurbit[8]uril-Based Supramolecular Organic Framework by Dipeptides in Water. Angew. Chem. Int. Edit. 2023, 62, e202308029. [Google Scholar] [CrossRef]
- Chen, D.-T.; Zhang, X.-W.; Xia, Q.-X.; Yang, X.-N.; Wang, C.-H.; Shan, P.-H.; Xiao, X. A novel styrylpyridine derivatives: Supramolecular assembly with cucurbit[8]uril for detection of difenzoquat, white light material and beyond. J. Mol. Liq. 2023, 385, 122414. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Z.; Shao, A.; Wu, Z.; He, Z.; Tian, H.; Ma, X. Aqueous up-conversion organic phosphorescence and tunable dual emission in a single-molecular emitter. Chem. Sci. 2025, 16, 6290–6297. [Google Scholar] [CrossRef]
- Geng, Q.-X.; Wang, F.; Cong, H.; Tao, Z.; Wei, G. Recognition of silver cations by a cucurbit[8]uril-induced supramolecular crown ether. Org. Biomol. Chem. 2016, 14, 2556–2562. [Google Scholar] [CrossRef]
- Tabet, A.; Forster, R.A.; Parkins, C.C.; Wu, G.; Scherman, O.A. Modulating stiffness with photo-switchable supramolecular hydrogels. Polym. Chem. 2019, 10, 467–472. [Google Scholar] [CrossRef]
- Gao, Z.-Z.; Lin, R.L.; Bai, D.; Tao, Z.; Liu, J.X.; Xiao, X. Host-guest complexation of cucurbit[8]uril with two enantiomers. Sci. Rep. 2017, 7, 44717. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, X.; Wen, X.; Yu, H.; Li, B.; Wang, M.; Liu, M.; Wu, G. Chiral ring-in-ring complexes with torsion-induced circularly polarized luminescence. Chem. Sci. 2025, 16, 7858–7863. [Google Scholar] [CrossRef]
- Tang, B.; Xu, W.; Xu, J.-F.; Zhang, X. Transforming a Fluorochrome to an Efficient Photocatalyst for Oxidative Hydroxylation: A Supramolecular Dimerization Strategy Based on Host-Enhanced Charge Transfer. Angew. Chem. Int. Edit. 2021, 60, 9384–9388. [Google Scholar] [CrossRef]
- Xu, W.; Du, Y.; Ma, H.; Tang, X.; Xu, J.-F.; Zhang, X. A cucurbit[8]uril-mediated host-guest complex for red-light photocatalysis. Org. Chem. Front. 2024, 11, 6327–6332. [Google Scholar] [CrossRef]
- Zhou, X.; Bai, X.; Shang, F.; Zhang, H.-Y.; Wang, L.-H.; Xu, X.; Liu, Y. Supramolecular assembly activated single-molecule phosphorescence resonance energy transfer for near-infrared targeted cell imaging. Nat. Commun. 2024, 15, 4787. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-F.; Huo, M.; Kong, J.; Liu, Y. Cucurbituril-Confined Tetracation Supramolecular 2D Organic Framework for Dual-Emission TS-FRET. Adv. Opt. Mater. 2024, 12, 2400453. [Google Scholar] [CrossRef]
- Niu, Q.; Ye, Y.; Su, L.; He, X.; Li, Z.; Liu, Y. Ultrastrong room-temperature phosphorescence in cucurbit[8]uril-mediated crystalline supramolecules for ratiometric detection of phenethylamine. Sci. China Chem. 2025, 68, 2671–2679. [Google Scholar] [CrossRef]
- Lin, F.; Yu, S.-B.; Liu, Y.-Y.; Liu, C.-Z.; Lu, S.; Cao, J.; Qi, Q.-Y.; Zhou, W.; Li, X.; Liu, Y.; et al. Porous Polymers as Universal Reversal Agents for Heparin Anticoagulants through an Inclusion-Sequestration Mechanism. Adv. Mater. 2022, 34, 2200549. [Google Scholar] [CrossRef]
- Yu, S.-B.; Lin, F.; Tian, J.; Yu, J.; Zhang, D.-W.; Li, Z.-T. Water-soluble and dispersible porous organic polymers: Preparation, functions and applications. Chem. Soc. Rev. 2022, 51, 434–449. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Pu, Z.-H.; Dai, X.; Bai, Q.-H.; Tao, Z.; Xiao, X. Cucurbit[8]uril-modulated discrete pyrene dimers fluorescent sensor for nitroaromatic compounds and latent fingerprints visualization. Sens. Actuator B-Chem. 2024, 418, 136312. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Q.; Pan, D.; Xu, X.; Bai, Q.-H.; Wang, C.-H.; Zeng, X.; Xiao, X. Supramolecular phosphorescent assemblies based on cucurbit[8]uril and bromophenylpyridine derivatives for dazomet recognition. Spectrochim. Acta A. 2025, 330, 125695. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, D.; Guan, M.; Li, Q.; Xu, J.; Cai, M.; Xu, J.; Liu, Q. Study of supramolecular organic frameworks for purification of hydrogen through molecular dynamics simulations. Sep. Purif. Technol. 2024, 335, 126106. [Google Scholar] [CrossRef]
- Zhang, D.-S.; Zhang, W.-Z.; Ding, X.-Y.; Xiao, J.; Wang, W.; Zhang, Y.-K.; Zhang, R.-H.; Hu, H.; Zhang, Y.-Z.; Geng, L.; et al. A novel flake-shaped supramolecular building block based metal-organic framework: Structure analysis and selective dye adsorption properties. Polyhedron 2023, 244, 116595. [Google Scholar] [CrossRef]
- Gao, Z.-Z.; Xu, Y.-Y.; Wang, Z.-K.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Porous [Ru(bpy)3]2+-Cored Metallosupramolecular Polymers: Preparation and Recyclable Photocatalysis for the Formation of Amides and 2 Diazo-2-phenylacetates. ACS Appl. Polym. Mater. 2020, 2, 4885–4892. [Google Scholar] [CrossRef]
- Gao, Z.-Z.; Shen, L.; Hu, Y.-L.; Sun, J.-F.; Wei, G.; Zhao, H. Supramolecular Crystal Networks Constructed from Cucurbit[8]uril with Two Naphthyl Groups. Molecules 2023, 28, 63. [Google Scholar] [CrossRef]
- Zhao, H.; Shen, F.-F.; Sun, J.-F.; Gao, Z.-Z. Cucurbit[8]uril-controlled[2+2]photodimerization of styrylpyridinium molecule. Inorg. Chem. Commun. 2022, 141, 109536. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.-K.; Gao, Z.-Z.; Zong, Y.; Sun, J.-D.; Zhou, W.; Wang, H.; Ma, D.; Li, Z.-T.; Zhang, D.W. Porous organic polymer overcomes the post-treatment phototoxicity of photodynamic agents and maintains their antitumor efficiency. Acta Biomater. 2022, 150, 254–264. [Google Scholar] [CrossRef]
- Gao, Z.-Z.; Wang, Z.-K.; Wei, L.; Yin, G.; Tian, J.; Liu, C.-Z.; Wang, H.; Zhang, D.-W.; Zhang, Y.-B.; Li, X.; et al. Water-Soluble 3D Covalent Organic Framework that Displays an Enhanced Enrichment Effect of Photosensitizers and Catalysts for the Reduction of Protons to H2. ACS Appl. Mater. Interfaces 2020, 12, 1404–1411. [Google Scholar] [CrossRef]
- Day, A.I.; Arnold, A.P.; Blanch, R.J.; Snushall, B.J. Controlling Factors in the Synthesis of Cucurbituril and Its Homologues. J. Org. Chem. 2001, 66, 8094–8100. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jung, I.-S.; Kim, S.-Y.; Lee, E.; Kang, J.-K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 2000, 122, 540–541. [Google Scholar] [CrossRef]
- Tian, J.; Xu, Z.-Y.; Zhang, D.-W.; Wang, H.; Xie, S.-H.; Xu, D.-W.; Ren, Y.-H.; Wang, H.; Liu, Y.; Li, Z.-T. Supramolecular metalorganic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production. Nat. Commun. 2016, 7, 11580. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; Wu, Z.-Y.; Wang, Z.-K.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. A woven supramolecular metal-organic framework comprising a ruthenium bis(terpyridine) complex and cucurbit[8]uril: Enhanced catalytic activity toward alcohol oxidation. ChemPlusChem 2020, 85, 1498–1503. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yang, M.; Yang, W.; Gao, Z.; Zhao, H.; Wei, G.; Sun, J. A Study of the Inclusion Complex Formed Between Cucurbit[8]uril and N,4-Di(pyridinyl)benzamide Derivative. Organics 2025, 6, 26. https://doi.org/10.3390/org6020026
Wang Z, Yang M, Yang W, Gao Z, Zhao H, Wei G, Sun J. A Study of the Inclusion Complex Formed Between Cucurbit[8]uril and N,4-Di(pyridinyl)benzamide Derivative. Organics. 2025; 6(2):26. https://doi.org/10.3390/org6020026
Chicago/Turabian StyleWang, Zhikang, Mingjie Yang, Weibo Yang, Zhongzheng Gao, Hui Zhao, Gang Wei, and Jifu Sun. 2025. "A Study of the Inclusion Complex Formed Between Cucurbit[8]uril and N,4-Di(pyridinyl)benzamide Derivative" Organics 6, no. 2: 26. https://doi.org/10.3390/org6020026
APA StyleWang, Z., Yang, M., Yang, W., Gao, Z., Zhao, H., Wei, G., & Sun, J. (2025). A Study of the Inclusion Complex Formed Between Cucurbit[8]uril and N,4-Di(pyridinyl)benzamide Derivative. Organics, 6(2), 26. https://doi.org/10.3390/org6020026