Integrating Multi-Access Edge Computing (MEC) into Open 5G Core
Abstract
:1. Introduction
- Integration between MEC and 5GC: This study demonstrates the feasibility of integrating 5G and MEC through a communication API.
- Implementation of Integration Service: One approach to realizing the integration between MEC and 5G technology is implementing a specific service. This service can be provided using a dedicated communication API.
- Expansion of MTS API: The original MTS API was not designed to route application traffic to the 5GC. Therefore, to enable traffic transfer between MEC and the 5G network, it is necessary to enhance this API by creating a new specific service.
- Validation of the API in a Test Environment: The proposed API was validated in a testbed environment using a simulated MEC framework and a 5GC.
2. 5G System
2.1. 5G Core
2.2. Network Functions
2.3. Network Interfaces
- N3—Communication interface between NR and UPF. This interface carries the data encapsulated for routing [8].
- N4—The control exerted by the SMF over the UPF is carried out through this interface, with all their communications taking place exclusively through it [8].
- N6—The UPF connects to external data networks through this interface. Data no longer undergo the encapsulation process at this stage, although implementing a Virtual Private Network (VPN) is feasible [8].
- N9—Within the core infrastructure of 5G, it is possible to deploy UPFs in a sequential configuration. These UPFs are interconnected through the network interface, and scenarios involving mobility are examples that use this approach [8].
2.4. MEC Reference Architecture
3. Related Work
- Proposal for 5G-MEC Integration—A proposal for integration is presented.
- Integration through Service—Whether the proposed integration is implemented as a service.
- Integration through New Architecture—Whether the integration proposal is made through changes to existing architecture or the creation of new ones.
- Validation of Proposal—Whether the proposal has been validated.
- Validation with 5GC SA—Is there any validation with the 5G-SA network core?
4. A New Service Proposed
4.1. Implementation
4.2. MTS API
5. Performance Evaluation
5.1. Environment
5.2. Evaluation Metrics
End-to-End Communication Test
5.3. End-to-End Validation Test
5.4. API Evaluation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
3GPP | 3rd Generation Partnership Project |
5GS | 5G System |
AMF | Access and Mobility Management Function |
API | Application Programming Interface |
B5G | Beyond 5G |
B-UPF | Branching UPF |
BMI | Body Mass Index |
BWM | BandWidth Management |
CP | Control Plane |
DASMO | Distributed Autonomous Slice Management |
DN | Data Network |
DP | Data Plane |
EB | Exabytes |
eMBB | Enhanced Mobile Broadband |
EPC | Evolved Packet Core |
gNB | 5G New Radio |
HSS | Home Subscriber Server |
HTTP | Hypertext Transfer Protocol |
I-near-RT RIC | Integrated near-RT RIC |
I-UPF | Internet UPF |
IAB | Integrated Access Backhaul |
IoT | Internet of Things |
JSON | JavaScript Object Notation |
JWT | JSON Web Token |
KPI | Key Performance Indicator |
M-UPF | MEC UPF |
MBB | Mobile BroadBand |
MEC | Multi-Access Edge Computing |
MEC-App | MEC Application |
MEO | Multi-Access Edge Orchestrator |
MEP | MEC Platform |
MEPM | MEC Platform Manager |
MIMO | Multiple-Input Multiple-Out |
MME | Mobility Management Entity |
mMTC | Massive Machine Type Communications |
MTS | Multi-Access Traffic Steering |
near-RT RIC | near-Real Time RAN Intelligent Controller |
NEF | Network Exposure Function |
NFV | Network Function Virtualization |
NPNs | Non-Public Networks |
NR | New Radio |
NS | Network Slice |
NSA | Non-Standalone |
OAI | OpenAirInterface |
QoS | Quality Of Service |
REST | Representational State Transfer |
SA | Standalone |
SBA | Service-Based Architecture |
SBI | Service-Based Interface |
SDN | Software Defined Networks |
SMF | Session Management Function |
SON | Self-Organizing Network |
SR | Service Registry |
UE | User Equipment |
UHD | Ultra-High Definition |
UPF | User Plane Function |
URLLC | Ultra Reliable Low Latency Communications |
V2X | Vehicle-to-Everything |
VIM | Virtualization Infrastructure Manager |
VM | Virtual Machine |
VNF | Virtual Network Functions |
WIoT | Wearable IoT |
References
- Salah, I.; Mabrook, M.M.; Hussein, A.I.; Rahouma, K.H. Comparative study of efficiency enhancement technologies in 5G networks-A survey. Procedia Comput. Sci. 2021, 182, 150–158. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, J. The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun. Mag. 2014, 52, 36–43. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, G.; Zheng, G.; Chih-Lin, I.; You, X.; Hanzo, L. Open-Source Multi-Access Edge Computing for 6G: Opportunities and Challenges. IEEE Access 2021, 9, 158426–158439. [Google Scholar] [CrossRef]
- Pivoto, D.G.S.; Rezende, T.T.; Facina, M.S.P.; Moreira, R.; de Oliveira Silva, F.; Cardoso, K.V.; Correa, S.L.; Araujo, A.V.D.; Silva, R.S.E.; Neto, H.S.; et al. A Detailed Relevance Analysis of Enabling Technologies for 6G Architectures. IEEE Access 2023, 11, 89644–89684. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J. Mobile Edge Computing, Metaverse, 6G Wireless Communications, Artificial Intelligence, and Blockchain: Survey and Their Convergence. In Proceedings of the 2022 IEEE 8th World Forum on Internet of Things (WF-IoT), Yokohama, Japan, 26 October–11 November 2022; pp. 1–8. [Google Scholar] [CrossRef]
- 3rd Generation Partnership (3GPP). TR21.915 V15.9.0, 3rd Generation Partnership Project. 2018. Available online: https://www.3gpp.org/ftp/Specs/archive/21_series/21.915/ (accessed on 6 May 2021).
- Amgoune, H.; Mazri, T. Comparison between different 5G architectures for a better integration of these services and proposal of an improved architecture. In Proceedings of the 4th International Conference on Smart City Applications, Casablanca, Morocco, 2–4 October 2019; pp. 1–7. [Google Scholar]
- Rommer, S.; Hedman, P.; Olsson, M.; Frid, L.; Sultana, S.; Mulligan, C. 5G Core Networks: Powering Digitalization; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Filali, A.; Abouaomar, A.; Cherkaoui, S.; Kobbane, A.; Guizani, M. Multi-Access Edge Computing: A Survey. IEEE Access 2020, 8, 197017–197046. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Virdis, A.; Nardini, G.; Stea, G.; Sabella, D. End-to-end performance evaluation of MEC deployments in 5G scenarios. J. Sens. Actuator Netw. 2020, 9, 57. [Google Scholar] [CrossRef]
- Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile edge computing: A survey. IEEE Internet Things J. 2017, 5, 450–465. [Google Scholar] [CrossRef]
- ETSI. Framework and Reference Architecture; Technical Report for Multi-Access Edge Computing (MEC); ETSI: Valbonne, France, 2022; Available online: https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/03.01.01_60/gs_mec003v030101p.pdf (accessed on 25 April 2024).
- ETSI. Traffic Management APIs; Technical Report for Multi-Access Edge Computing (MEC); ETSI: Valbonne, France, 2020; Available online: https://www.etsi.org/deliver/etsi_gs/MEC/001_099/015/02.01.01_60/gs_mec015v020101p.pdf (accessed on 25 April 2024).
- Giust, F.; Verin, G.; Antevski, K.; Chou, J.; Fang, Y.; Featherstone, W.; Fontes, F.; Frydman, D.; Li, A.; Manzalini, A.; et al. MEC deployments in 4G and evolution towards 5G. ETSI White Paper 2018, 24, 1–24. [Google Scholar]
- Kekki, S.; Featherstone, W.; Fang, Y.; Kuure, P.; Li, A.; Ranjan, A.; Purkayastha, D.; Jiangping, F.; Frydman, D.; Verin, G.; et al. MEC in 5G networks. ETSI White Paper 2018, 28, 1–28. [Google Scholar]
- Silva, J.P.L.; Nery, S.W.L.; Silva, R.; Oliveira-Jr, A.C.; Cardoso, K.V.; Both, C.B. Entendendo o núcleo 5G na prática, através de uma implementação de código aberto. In SBRT 2020: Livro de Minicursos; Instituto Federal de Ensino, Ciência e Tecnologia da Paraíba–IFPB: Florianópolis, SC, Brazil, 2021; Chapter 1. [Google Scholar]
- Maleki, E.F.; Ma, W.; Mashayekhy, L.; La Roche, H. QoS-aware 5G component selection for content delivery in multi-access edge computing. In Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing, Leicester, UK, 6–9 December 2021; pp. 1–10. [Google Scholar]
- Iwai, T.; Nakao, A. Demystifying myths of MEC: Rethinking and exploring benefits of multi-access/mobile edge computing. In Proceedings of the 2018 IEEE 7th International Conference on Cloud Networking (CloudNet), IEEE, Tokyo, Japan, 22–24 October 2018; pp. 1–4. [Google Scholar]
- Agência Nacional de Telecomunicações. Painel de Dados. 2021. Available online: https://informacoes.anatel.gov.br/paineis/acessos/telefonia-movel (accessed on 7 May 2021).
- Ericsson. Ericsson Mobility Report 2020. Available online: https://www.ericsson.com/en/press-releases/2020/11/more-than-1-billion-people-will-have-access-to-5g-coverage-by-the-end-of-2020 (accessed on 25 April 2024).
- Amazon Found Every 100ms of Latency Cost them 1% in Sales. 2023. Available online: https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales (accessed on 12 December 2023).
- Ksentini, A.; Frangoudis, P.A. Toward Slicing-Enabled Multi-Access Edge Computing in 5G. IEEE Netw. 2020, 34, 99–105. [Google Scholar] [CrossRef]
- Ma, H.; Li, S.; Zhang, E.; Lv, Z.; Hu, J.; Wei, X. Cooperative Autonomous Driving Oriented MEC-Aided 5G-V2X: Prototype System Design, Field Tests and AI-Based Optimization Tools. IEEE Access 2020, 8, 54288–54302. [Google Scholar] [CrossRef]
- my5G Initiative. my5G-Core. 2021. Available online: https://github.com/my5G/my5G-core (accessed on 1 January 2024).
- Morais, F.Z.; de Almeida, G.M.F.; Pinto, L.; Cardoso, K.V.; Contreras, L.M.; Righi, R.d.R.; Both, C.B. PlaceRAN: Optimal Placement of Virtualized Network Functions in Beyond 5G Radio Access Networks. IEEE Trans. Mob. Comput. 2023, 22, 5434–5448. [Google Scholar] [CrossRef]
- Network, Evolved Universal Terrestrial Radio Access. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (gprs) Enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Access. EUTRA Network. 2011. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=849 (accessed on 25 April 2024).
- Foukas, X.; Patounas, G.; Elmokashfi, A.; Marina, M.K. Network slicing in 5G: Survey and challenges. IEEE Commun. Mag. 2017, 55, 94–100. [Google Scholar] [CrossRef]
- Mamushiane, L.; Dlamini, S. Leveraging SDN/NFV as key stepping stones to the 5G era in emerging markets. In Proceedings of the 2017 Global Wireless Summit (GWS), IEEE, Cape Town, South Africa, 15–18 October 2017; pp. 23–27. [Google Scholar]
- Taleb, T.; Afolabi, I.; Samdanis, K.; Yousaf, F.Z. On multi-domain network slicing orchestration architecture and federated resource control. IEEE Netw. 2019, 33, 242–252. [Google Scholar] [CrossRef]
- Tomaszewski, L.; Kukliński, S.; Kołakowski, R. A new approach to 5G and MEC integration. In Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, Neos Marmaras, Greece, 5–7 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 15–24. [Google Scholar]
- Kukliński, S.; Tomaszewski, L. Dasmo: A scalable approach to network slices management and orchestration. In Proceedings of the NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium, IEEE, Taipei, Taiwan, 23–27 April 2018; pp. 1–6. [Google Scholar]
- Kukliński, S.; Tomaszewski, L.; Kołakowski, R. On O-RAN, MEC, SON and Network Slicing integration. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), IEEE, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- ETSI. Multi-Access Edge Computing (MEC); MEC 5G Integration. Technical Report. 2020. Available online: https://www.etsi.org/deliver/etsi_gr/MEC/001_099/031/02.01.01_60/gr_MEC031v020101p.pdf (accessed on 25 April 2024).
- GeekHunter. Flask: O Que é e Como Codar Com Esse Micro Framework Python. 2020. Available online: https://blog.geekhunter.com.br/flask-framework-python/ (accessed on 21 February 2020).
- ETSI. Multi-Access Edge Computing (MEC); Device Application Interface. Technical Report. 2020. Available online: https://www.etsi.org/deliver/etsi_gs/MEC/001_099/016/02.02.01_60/gs_mec016v020201p.pdf (accessed on 14 May 2024).
- Kubernetes. 2021. Available online: https://kubernetes.io/pt-br/docs/ (accessed on 29 August 2022).
- MongoDB. 2022. Available online: https://www.mongodb.com/pt-br (accessed on 29 August 2022).
- Wijethilaka, S.; Liyanage, M. Survey on network slicing for Internet of Things realization in 5G networks. IEEE Commun. Surv. Tutorials 2021, 23, 957–994. [Google Scholar] [CrossRef]
- Zhang, D.; Rodrigues, J.J.; Zhai, Y.; Sato, T. Design and Implementation of 5G e-Health Systems: Technologies, Use Cases, and Future Challenges. IEEE Commun. Mag. 2021, 59, 80–85. [Google Scholar] [CrossRef]
- Porambage, P.; Okwuibe, J.; Liyanage, M.; Ylianttila, M.; Taleb, T. Survey on multi-access edge computing for internet of things realization. IEEE Commun. Surv. Tutor. 2018, 20, 2961–2991. [Google Scholar] [CrossRef]
- Locust. Locust—A Modern Load Testing Framework. 2022. Available online: https://locust.io/ (accessed on 9 February 2022).
Works | 5G-MEC Integration Proposal | Integration through Service | Integration through New Architecture | Proposal Validation | 5GC SA Validation |
---|---|---|---|---|---|
[16] MEC in 5G Networks | X | X | |||
[31] A New Approach to 5G and MEC Integration | X | X | |||
[23] Toward Slicing-Enabled Multi-Access Edge Computing in 5G | X | X | X | ||
[33] On O-RAN, MEC, SON and Network Slicing integration | X | X | |||
This Paper | X | X | X | X |
Application | Latency |
---|---|
Smart Home | 1 ms–1000 s |
Remote Surgery | 200 ms |
Remote Medical Consultation | 1 ms–100 s |
Paramedic Support | 200 ms |
Critical Health Event | 200 ms |
Smart Farm | ~ hours |
Vital Signs Patches | 1000 ms |
Locatable Tags | 1000 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xavier, R.; Silva, R.S.; Ribeiro, M.; Moreira, W.; Freitas, L.; Oliveira-Jr, A. Integrating Multi-Access Edge Computing (MEC) into Open 5G Core. Telecom 2024, 5, 433-450. https://doi.org/10.3390/telecom5020022
Xavier R, Silva RS, Ribeiro M, Moreira W, Freitas L, Oliveira-Jr A. Integrating Multi-Access Edge Computing (MEC) into Open 5G Core. Telecom. 2024; 5(2):433-450. https://doi.org/10.3390/telecom5020022
Chicago/Turabian StyleXavier, Ruben, Rogério S. Silva, Maria Ribeiro, Waldir Moreira, Leandro Freitas, and Antonio Oliveira-Jr. 2024. "Integrating Multi-Access Edge Computing (MEC) into Open 5G Core" Telecom 5, no. 2: 433-450. https://doi.org/10.3390/telecom5020022
APA StyleXavier, R., Silva, R. S., Ribeiro, M., Moreira, W., Freitas, L., & Oliveira-Jr, A. (2024). Integrating Multi-Access Edge Computing (MEC) into Open 5G Core. Telecom, 5(2), 433-450. https://doi.org/10.3390/telecom5020022