Impact of Biochar Addition in Microwave Torrefaction of Camelina Straw and Switchgrass for Biofuel Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microwave Torrefaction Treatment
2.2. Experimental Design and Statistical Analysis
2.3. Product Yield and Thermochemical Analysis
2.4. Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Confocal Microscopy
3. Results and Discussion
3.1. Statistical Analysis and Effect of the Response Variables
3.2. Characterization of the Solid Fraction
3.3. Torrefaction Energy Consumption
3.4. Characterizations of the Biochar Fractions
3.4.1. Moisture Content
3.4.2. Thermochemical Properties Analysis
3.4.3. Thermogravimetric Analysis
3.4.4. Fuel Properties Characterization, Energy Yield and Combustibility
3.5. Surface Characterization of Raw and Torrefied Biomass
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Whalen, J.; Xu, C.C.; Shen, F.; Kumar, A.; Eklund, M.; Yan, J. Sustainable Biofuel Production from Forestry, Agricultural and Waste Biomass Feedstocks. Appl. Energ. 2017, 198, 281–283. [Google Scholar] [CrossRef]
- Liu, T.; McConkey, B.; Huffman, T.; Smith, S.; MacGregor, B.; Yemshanov, D.; Kulshreshtha, S. Potential and Impacts of Renewable Energy Production from Agricultural Biomass in Canada. Appl. Energ. 2014, 130, 222–229. [Google Scholar] [CrossRef]
- Singh, S.; JChakraborty, P.; Mondal, M.K. Pyrolysis of torrefied biomass: Optimization of process parameters using response surface methodology, characterization, and comparison of properties of pyrolysis oil from raw biomass. J. Clean Prod. 2020, 272, 122517. [Google Scholar] [CrossRef]
- Kadlimatti, H.M.; Mohan, B.R.; Saidutta, M.B. Bio-oil from microwave-assisted pyrolysis of food waste-optimization using response surface methodology. Biomass Bioenergy 2019, 123, 25–33. [Google Scholar] [CrossRef]
- Usamni, Z.; Sharma, M.; Awasthi, A.K.; Lukk, T.; Tuohu, M.G.; Gong, L.; Nguyen-Tri, P.; Goggard, A.D.; Bill, R.M.; Nayak, C.S.; et al. Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization. Renew. Sust. Energy Rev. 2021, 148, 111258. [Google Scholar] [CrossRef]
- Kapalo, S.Y.; Zainuddin, M.F.; Abd Manaf, L.; Roslan, A.M. A review of technical and economic aspects of biomass briquetting. Sustainability 2020, 12, 4609. [Google Scholar] [CrossRef]
- Chen, W.H. Torrefaction. In Pretreatment of Biomass–Processes and Technologies; Pandey, A., Negi, S., Binod, P., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 173–192. [Google Scholar]
- Sokhansanj, S.; Mani, S.; Turhollow, A.; Kumar, A.; Barnsby, D.; Lynd, L.; Laser, M. Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.) current technology and envisioning a mature technology. Biof. Bioprod. Bioref. 2009, 3, 124–141. [Google Scholar] [CrossRef]
- Tumuluru, J.S. Comparison of chemical composition and energy properties of torrefied switchgrass and corn stover. Front. Energy Res. 2015, 3, 46. [Google Scholar] [CrossRef] [Green Version]
- Agu, O.S.; Tabil, L.G.; Venkatesh, V.; Dumonceaux, T.; Mupondwa, E. Pretreatment of crop residues by application of microwave heating and alkaline solution for biofuel processing: A review. In Renewable Resources and Biorefineries; Jacob-Lopes, E., Ed.; IntechOpen Ltd.: London, UK, 2018. [Google Scholar]
- Xu, J. Microwave pretreatment. In Pretreatment of Biomass: Processes and Technologies; Pandey, A., Ed.; Elsevier: Waltham, MA, USA, 2015; pp. 157–172. [Google Scholar]
- Khelfa, A.; Rodrigues, F.A.; Koubaa, M.; Vorobiev, E. Microwave-Assisted Pyrolysis of Pine Wood Sawdust Mixed with Activated Carbon for Bio-Oil and Bio-Char Production. Processes 2020, 8, 1437. [Google Scholar] [CrossRef]
- Emadi, B.; Iroba, K.L.; Tabil, L.G. Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass. Appl. Energy 2017, 198, 312–319. [Google Scholar] [CrossRef]
- Huang, Y.F.; Sung, H.T.; Chiueh, P.T.; Lo, S. Microwave torrefaction of sewage sludge and Leucaena. J. Taiwan Inst. Chem. Eng. 2017, 70, 236–243. [Google Scholar] [CrossRef]
- Ethaib, S.; Omar, R.; Kamal, S.M.M.; Biak, D.R.A.; Zubaidi, S.L. Microwave-assisted pyrolysis of biomass waste: A mini review. Processes 2020, 8, 1190. [Google Scholar] [CrossRef]
- Agu, O.S.; Tabil, L.; Emadi, E.; Mupondwa, E. Torrefaction and pelleting wheat and barley straw for biofuel and energy application. Front. Energy Res. 2021, 9, 699657. [Google Scholar] [CrossRef]
- Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Wei, Y.; Liang, J.; Liu, Y.; Julson, J.; Chen, S.; Wu, J.; et al. Microwave torrefaction of douglas fir sawdust pellets. Energy 2012, 26, 5936–5943. [Google Scholar] [CrossRef]
- Yan, B.; Jiao, L.; Li, J.; Zhu, X.; Ahmed, S.; Chen, G. Investigation on microwave torrefaction influence, TG-MS-FTIR analysis, and gasification performance. Energy 2021, 220, 119794. [Google Scholar] [CrossRef]
- Li, J.; Dia, J.; Liu, G.; Zhang, H.; Goa, Z.; Fu, J.; He, Y. Biochar from microwave pyrolysis of biomass: A review. Biomass Bioenergy 2016, 94, 228–244. [Google Scholar] [CrossRef]
- Agu, O.S.; Tabil, L.; Emadi, E.; Mupondwa, E.; Duncan, C. Effect of biochar additive in torrefied biomass: Energy consumption, mass yield, grinding performance, and thermochemical properties. In 2021 ASABE Annual International Virtual Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2021. [Google Scholar] [CrossRef]
- Ren, S.; Lei, H.; Wang, L.; Yadavalli, G.; Lui, Y.; Julson, Y. The integrated process of microwave torrefaction and pyrolysis of corn stover for biofuel production. J. Analy. Appl. Pyrol. 2014, 108, 248–253. [Google Scholar] [CrossRef]
- Bu, Q.; Liu, Y.; Liang, J.; Morgan, H., Jr.; Yan, L.; Xu, F.; Mao, H. Microwave-assisted co-pyrolysis of microwave torrefied biomass with waste plastic using ZSM-5 as a catalyst for high quality bio-oil. J. Analy. App. Pyro. 2018, 134, 536–543. [Google Scholar] [CrossRef]
- Mupondwa, E.; Li, X.; Tabil, L.G.; Falk, K.; Gugel, R. Technoeconomic analysis of camelina oil extraction as feedstock for biojet fuel in the Canadian Prairies. Biomass Bioenergy 2016, 95, 221–234. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Office of Energy Efficiency and Renewable Energy, National Renewable Energy Laboratory: Golden, CO, USA, 2008; NREL/TP-510-42618. [Google Scholar]
- ASABE Standard S358.2; Moisture Measurement–Forages. American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2006.
- Singh, S.; Chakraborty, J.P.; Mondal, M.K. Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel. Renew. Energy 2020, 153, 711–724. [Google Scholar] [CrossRef]
- Agu, O.S.; Tabil, L.G.; Dumonceaux, T. Microwave-Assisted Alkali Pre-treatment, Densification and Enzymatic Saccharification of Canola Straw and Oat Hull. Bioengineering 2017, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Hubbe, A.M.; Chandra, R.P.; Dogu, D.; van Velzen, S.T.J. Analytical staining of Cellulosic materials: A review. BioResources 2019, 14, 7387–7464. [Google Scholar] [CrossRef]
- Nanda, S.; Mohanty, P.; Pant, K.K.; Naik, S.; Kozinski, J.A.; Dalai, A.K. Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenerg Res 2013, 6, 663–677. [Google Scholar] [CrossRef]
- Chen, W.H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Shahab, S.; Hess, J.R.; Wright, C.T.; Boardman, R.D. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 2011, 7, 384–401. [Google Scholar] [CrossRef] [Green Version]
- Tumuluru, J.S. Effect of deep drying and torrefaction temperature on proximate, ultimate composition, and heating value of 2-mm lodgepole pine (Pinus contorta) grind. J. Bioeng. 2016, 3, 16. [Google Scholar] [CrossRef]
- Iroba, K.L.; Baik, O.D.; Tabil, L.G. Torrefaction of biomass from municipal solid waste fractions I: Temperature profiles, moisture content, energy consumption, mass yield, and thermochemical properties. Biomass Bioenergy 2017, 105, 320–330. [Google Scholar] [CrossRef]
- Chen, D.; Gao, A.; Ma, Z.; Fei, D.; Chang, Y.; Shen, C. In-depth study of rice husk torrefaction: Characterization of solid, liquid and gaseous products, oxygen migration and energy yield. Biores. Tech. 2018, 253, 148–153. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. Pyrolysis kinetics and thermal behaviour of waste sawdust biomass using thermogravimetric analysis. Biores. Tech. 2018, 251, 63–74. [Google Scholar] [CrossRef]
- Li, T.; Guo, F.; Li, X.; Peng, K.; Jiang, X.; Guo, C. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis. Waste Mgt. 2018, 76, 544–554. [Google Scholar] [CrossRef]
- De Bhownick, G.; Sarmah, A.K.; Sen, R. Production and characterization of a value-added biochar mix using seaweed, rice husk and pine sawdust: A parametric study. J. Clean. Prod. 2018, 200, 641–656. [Google Scholar] [CrossRef]
- Hernando, H.; Fermoso, J.; Moreno, I.; Coronado, J.M.; Serrano, D.P.; Pizarro, P. Thermochemical valorization of camelina straw waste via fast pyrolysis. Biomass Conv. Bioref. 2017, 7, 277–287. [Google Scholar] [CrossRef]
- Kutlu, O.; Kocar, G. Upgrading lignocellulosic waste to fuel by torrefaction: Characterization and process optimization by response surface methodology. Int. J. Energy Res. 2018, 15, 4746–4760. [Google Scholar] [CrossRef]
- Manouchehrinejad, Y.; Yue, Y.; de Morais, R.A.L.; Souza, L.M.O.; Singh, H.; Mani, S. Densification of thermally treated energy cane and napier grass. Bio. Energy Res. 2018, 11, 538–550. [Google Scholar] [CrossRef]
- Ohm, T.I.; Chae, J.S.; Kim, J.K.; Oh, S.C. Study on the characteristics of biomass for co-combustion in coal power plant. J. Mater. Cycles Waste Mgt. 2015, 17, 249–257. [Google Scholar] [CrossRef]
Characteristics | Camelina Straw | Switchgrass | Biochar |
---|---|---|---|
Moisture content (% w.b.) | 4.18 | 9.10 | 15.35 |
Ash content (wt. % d.b.) | 1.41 | 2.67 | 7.67 |
Volatile matter (wt. % d.b.) | 79.87 | 76.96 | 49.83 |
Fixed carbon a (% d.b.) | 18.72 | 20.37 | 57.84 |
HHV (MJ/kg) | 19.05 | 18.19 | 32.89 |
MW Power | Sample | C (%) | H (%) | N (%) | S (%) | O (%) a | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Biochar | 79.81 | 4.39 | 0.44 | 0.04 | 15.32 | ||||||
Coal | 47.72 | 1.83 | 0.92 | 15.06 | 34.47 | ||||||
Raw | CS | SG | CS | SG | CS | SG | CS | SG | CS | SG | |
47.57 | 46.21 | 6.12 | 5.95 | 0.35 | 0.38 | 0.07 | 0.08 | 45.89 | 47.39 | ||
520 W | n-B 10 min | 48.87 | 54.32 | 6.08 | 5.66 | 0.36 | 0.32 | 0.10 | 0.06 | 44.59 | 39.63 |
n-B 15 min | 50.39 | 54.57 | 5.97 | 5.69 | 0.41 | 0.38 | 0.11 | 0.11 | 43.12 | 39.25 | |
n-B 20 min | 50.89 | 56.94 | 5.86 | 5.55 | 0.43 | 0.53 | 0.08 | 0.14 | 42.74 | 36.84 | |
90-10 10 min | 51.96 | 56.87 | 5.91 | 5.53 | 0.37 | 0.34 | 0.09 | 0.06 | 41.67 | 37.20 | |
90-10 15 min | 53.33 | 57.09 | 5.81 | 5.56 | 0.42 | 0.39 | 0.10 | 0.11 | 40.34 | 36.85 | |
90-10 20 min | 53.78 | 59.23 | 5.71 | 5.43 | 0.44 | 0.54 | 0.07 | 0.13 | 40.00 | 34.67 | |
80-20 10 min | 55.06 | 59.42 | 5.74 | 5.41 | 0.38 | 0.35 | 0.08 | 0.06 | 38.74 | 34.77 | |
80-20 15 min | 56.27 | 59.62 | 5.65 | 5.43 | 0.43 | 0.40 | 0.07 | 0.10 | 37.58 | 34.46 | |
80-20 20 min | 56.67 | 61.51 | 5.57 | 5.32 | 0.46 | 0.52 | 0.06 | 0.12 | 37.24 | 32.53 | |
650 W | n-B 10 min | 49.58 | 54.63 | 5.99 | 5.71 | 0.42 | 0.39 | 0.12 | 0.11 | 43.89 | 39.16 |
n-B 15 min | 51.89 | 58.24 | 5.94 | 5.34 | 0.46 | 0.46 | 0.10 | 0.03 | 41.61 | 35.93 | |
n-B 20 min | 53.73 | 59.24 | 5.81 | 5.44 | 0.47 | 0.47 | 0.09 | 0.09 | 39.90 | 34.76 | |
90-10 10 min | 52.6 | 57.15 | 5.83 | 5.58 | 0.43 | 0.40 | 0.11 | 0.11 | 41.02 | 36.77 | |
90-10 15 min | 54.68 | 60.40 | 5.78 | 5.24 | 0.47 | 0.47 | 0.09 | 0.03 | 38.98 | 33.86 | |
90-10 20 min | 56.34 | 61.30 | 5.67 | 5.33 | 0.48 | 0.49 | 0.08 | 0.09 | 37.43 | 32.79 | |
80-20 10 min | 55.63 | 59.67 | 5.67 | 5.45 | 0.44 | 0.41 | 0.10 | 0.10 | 38.17 | 34.38 | |
80-20 15 min | 57.47 | 62.55 | 5.63 | 5.15 | 0.48 | 0.46 | 0.08 | 0.03 | 36.34 | 31.80 | |
80-20 20 min | 58.95 | 63.35 | 5.53 | 5.23 | 0.49 | 0.50 | 0.07 | 0.08 | 34.97 | 30.83 |
MW Power | Sample | EY (%) | AC (% d.b.) | HHV (MJ/kg) | VM (% d.b.) | FC (% d.b.) | FR | CI (MJ/kg) | VI (MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CS | SG | CS | SG | CS | SG | CS | SG | CS | SG | CS | SG | CS | SG | CS | SG | ||
520 W | n-B 10 min | 82.95 | 84.40 | 3.10 | 3.09 | 19.55 | 21.47 | 75.32 | 74.52 | 21.58 | 22.39 | 0.29 | 0.30 | 72.73 | 76.16 | 15.96 | 18.32 |
n-B 15 min | 82.69 | 82.62 | 3.38 | 3.50 | 20.10 | 21.63 | 73.24 | 72.17 | 23.38 | 24.33 | 0.32 | 0.34 | 66.94 | 68.13 | 16.34 | 18.27 | |
n-B 20 min | 78.72 | 81.39 | 3.55 | 3.65 | 20.18 | 22.54 | 70.14 | 69.08 | 26.31 | 27.27 | 0.38 | 0.39 | 57.10 | 60.55 | 15.78 | 18.98 | |
90-10 10 min | 74.18 | 78.62 | 3.18 | 3.41 | 20.73 | 22.45 | 70.09 | 68.54 | 26.73 | 28.05 | 0.38 | 0.41 | 57.89 | 58.31 | 16.21 | 18.39 | |
90-10 15 min | 67.29 | 71.33 | 4.37 | 4.48 | 21.21 | 22.58 | 68.27 | 63.53 | 27.36 | 31.99 | 0.40 | 0.50 | 55.75 | 47.20 | 17.09 | 17.96 | |
90-10 20 min | 60.10 | 62.35 | 4.49 | 5.12 | 21.28 | 23.39 | 65.54 | 60.16 | 29.97 | 34.72 | 0.46 | 0.58 | 48.97 | 42.41 | 16.59 | 18.82 | |
80-20 10 min | 74.29 | 78.57 | 4.22 | 4.26 | 21.89 | 23.43 | 66.10 | 64.69 | 29.68 | 31.05 | 0.45 | 0.48 | 51.44 | 51.48 | 17.44 | 19.44 | |
80-20 15 min | 68.02 | 71.33 | 4.60 | 4.60 | 22.32 | 23.55 | 64.40 | 61.80 | 31.00 | 33.60 | 0.48 | 0.54 | 48.76 | 45.55 | 17.93 | 19.18 | |
80-20 20 min | 60.48 | 63.03 | 4.73 | 5.62 | 22.40 | 24.26 | 61.22 | 56.89 | 34.05 | 37.49 | 0.56 | 0.66 | 42.29 | 38.35 | 17.33 | 19.79 | |
650 W | n-B 10 min | 81.24 | 83.87 | 3.25 | 3.57 | 19.77 | 21.68 | 72.42 | 71.04 | 24.33 | 25.39 | 0.34 | 0.36 | 62.62 | 64.38 | 15.94 | 18.12 |
n-B 15 min | 82.34 | 81.32 | 3.42 | 3.80 | 20.74 | 22.82 | 70.41 | 69.36 | 26.17 | 26.84 | 0.37 | 0.39 | 59.30 | 62.47 | 16.56 | 19.50 | |
n-B 20 min | 80.47 | 77.47 | 3.61 | 3.84 | 21.40 | 23.42 | 68.79 | 66.2 | 26.60 | 29.96 | 0.39 | 0.45 | 58.72 | 54.78 | 17.71 | 19.75 | |
90-10 10 min | 59.31 | 68.79 | 4.55 | 4.35 | 20.90 | 22.63 | 68.29 | 63.41 | 27.16 | 32.24 | 0.40 | 0.51 | 55.28 | 46.91 | 16.85 | 18.00 | |
90-10 15 min | 59.61 | 63.79 | 4.69 | 4.54 | 21.78 | 23.66 | 65.38 | 59.62 | 29.93 | 35.84 | 0.46 | 0.60 | 49.98 | 41.41 | 17.32 | 18.85 | |
90-10 20 min | 55.68 | 59.92 | 4.90 | 4.89 | 22.37 | 24.19 | 62.00 | 53.42 | 33.10 | 41.69 | 0.53 | 0.78 | 43.94 | 32.51 | 17.58 | 18.44 | |
80-20 10 min | 59.42 | 68.83 | 5.18 | 5.51 | 22.05 | 23.58 | 63.61 | 57.86 | 31.21 | 36.83 | 0.49 | 0.64 | 46.99 | 38.62 | 17.64 | 18.78 | |
80-20 15 min | 58.89 | 61.89 | 5.33 | 7.37 | 22.83 | 24.46 | 60.66 | 53.71 | 34.01 | 38.92 | 0.56 | 0.72 | 42.53 | 34.60 | 18.15 | 20.57 | |
80-20 20 min | 55.39 | 58.21 | 5.84 | 7.84 | 23.35 | 24.93 | 58.42 | 49.34 | 35.74 | 42.82 | 0.61 | 0.87 | 39.68 | 29.31 | 18.78 | 20.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agu, O.S.; Tabil, L.G.; Mupondwa, E.; Emadi, B.; Dumonceaux, T. Impact of Biochar Addition in Microwave Torrefaction of Camelina Straw and Switchgrass for Biofuel Production. Fuels 2022, 3, 588-606. https://doi.org/10.3390/fuels3040036
Agu OS, Tabil LG, Mupondwa E, Emadi B, Dumonceaux T. Impact of Biochar Addition in Microwave Torrefaction of Camelina Straw and Switchgrass for Biofuel Production. Fuels. 2022; 3(4):588-606. https://doi.org/10.3390/fuels3040036
Chicago/Turabian StyleAgu, Obiora S., Lope G. Tabil, Edmund Mupondwa, Bagher Emadi, and Tim Dumonceaux. 2022. "Impact of Biochar Addition in Microwave Torrefaction of Camelina Straw and Switchgrass for Biofuel Production" Fuels 3, no. 4: 588-606. https://doi.org/10.3390/fuels3040036
APA StyleAgu, O. S., Tabil, L. G., Mupondwa, E., Emadi, B., & Dumonceaux, T. (2022). Impact of Biochar Addition in Microwave Torrefaction of Camelina Straw and Switchgrass for Biofuel Production. Fuels, 3(4), 588-606. https://doi.org/10.3390/fuels3040036