Three Pillars of Advanced Biofuels’ Sustainability
Abstract
:1. Introduction
2. State of Advanced Biofuels
2.1. Biofuel Productions
Countries | Ethanol | Biodiesel | ||
---|---|---|---|---|
USD/L | Weighted USD/L * | USD/L | Weighted USD/L * | |
Argentina | not in TOP 5 | 0.33 | 0.36 | |
Brazil | 0.35 | 0.53 | 0.37 | 0.41 |
China | 0.56 | 0.84 | not in TOP 5 | |
The EU | 0.54 | 0.81 | 0.74 | 0.81 |
India | 0.42 | 0.63 | not in TOP 5 | |
Indonesia | not in TOP 5 | 0.80 | 0.88 | |
USA | 0.38 | 0.57 | 0.48 | 0.53 |
2.2. Biofuel Markets
- The United States will keep its position; however, its market proportion will fall to 43% from the current 47%;
- Brazil will remain in second place with a 26% market share;
- China will increase its production and achieve a 9% market share by 2030;
- The EU’s production will be almost unchanged, leading to a slightly lower market proportion;
- Thailand and India will increase their production and reach a 4% market proportion.
- The next three countries will be Indonesia (19%), the USA (17%), and Brazil (12%);
- Argentina will come fourth with a 5% market share;
- Thailand will keep its 4% share.
2.3. Biofuel Regulations
2.3.1. U.S. Regulations
2.3.2. EU Regulations
- -
- The 14% target sets a maximum share of 7% for first-generation biofuels, bioliquids, and biomass fuels for road and rail transport. This is to ensure that food supply is not threatened. The remaining 7% should be advanced biofuels and renewable energy (electricity, coal, and non-biological materials).
- -
- By 2030, the share of advanced fuels produced from feedstocks listed in Annex IX, Part A (e.g., algae, straw, bio-waste), should reach 3.5%. Feedstocks listed in Annex IX, Part B (used cooking oils and animal fats), should account for a maximum of 1.7% by 2030 [21].
- -
- RED II [1] double counts the raw materials in Annex IX in the calculations [22]. RED II sets out additional rules that must be achieved (14% share of renewables in the transport sector). For example, it is prohibited to produce biofuels from biomass that is grown in areas with particularly valuable and high-carbon stocks (e.g., wetlands, primary forests) [19,20].
3. Materials and Methods
- biorefinery technology;
- non-ethanol and non-diesel use (e.g., electricity, biomethane);
- ethanol and biodiesel production technology;
- raw materials and coproducts;
- fuel or energy policy;
- theoretical modelling;
- supply chain analysis;
- only first-generation biofuels.
4. Sustainability of Advanced Biofuels
4.1. Economic Pillar
4.2. Environmental Pillar
4.3. Social Pillar
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oh, Y.-K.; Hwang, K.-R.; Kim, C.; Kim, J.R.; Lee, J.-S. Recent developments and key barriers to advanced biofuels: A short review. Bioresour. Technol. 2018, 257, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Mizik, T. Impacts of international commodity trade on conventional biofuels production. Sustainability 2020, 12, 2626. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.; Brito, F. Alternative fuels for internal combustion engines. Energies 2020, 13, 4086. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Bonifacio, S.; Clowes, J.; Foulds, A.; Holland, R.; Matthews, J.C.; Percival, C.J.; Shallcross, D.E. Investigation of Biofuel as a Potential Renewable Energy Source. Atmosphere 2021, 12, 1289. [Google Scholar] [CrossRef]
- Dickson, R.; Liu, J.J. A strategy for advanced biofuel production and emission utilization from macroalgal biorefinery using superstructure optimization. Energy 2021, 221, 119883. [Google Scholar] [CrossRef]
- Kolakoti, A.; Prasadarao, B.; Satyanarayana, K.; Setiyo, M.; Köten, H.; Raghu, M. Elemental, Thermal and Physicochemical Investigation of Novel Biodiesel from Wodyetia Bifurcata and Its Properties Optimization using Artificial Neural Network (ANN). Automot. Exp. 2022, 5, 3–15. [Google Scholar] [CrossRef]
- Brundtland, G.H. Our common future—Call for action. Environ. Conserv. 1987, 14, 291–294. [Google Scholar] [CrossRef]
- Anderson, B.J.; Mueller, D.W.; Hoard, S.A.; Sanders, C.M.; Rijkhoff, S.A. Social Science Applications in Sustainable Aviation Biofuels Research: Opportunities, Challenges, and Advancements. Front. Energy Res. 2022, 9, 946. [Google Scholar] [CrossRef]
- Li, J.; Guo, Z. Structure evolution of synthetic amino acids-derived basic ionic liquids for catalytic production of biodiesel. ACS Sustain. Chem. Eng. 2017, 5, 1237–1247. [Google Scholar] [CrossRef]
- Commodity Markets Outlook. In World Bank Report. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/37223/CMO-April-2022.pdf (accessed on 15 July 2022).
- Alalwan, H.A.; Alminshid, A.H.; Aljaafari, H.A. Promising evolution of biofuel generations. Subject review. Renew. Energy Focus 2019, 28, 127–139. [Google Scholar] [CrossRef]
- European Commission. Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources. Off. J. Eur. Union 2015, 239, 1–29. [Google Scholar]
- OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030. Available online: https://stats.oecd.org/# (accessed on 10 July 2022).
- IRS. Yearly Average Currency Exchange Rates. Available online: https://www.irs.gov/individuals/international-taxpayers/yearly-average-currency-exchange-rates (accessed on 10 July 2022).
- Brown, A.; Waldheim, L.; Landälv, I.; Saddler, J.; Ebadian, M.; McMillan, J.D.; Bonomi, A.; Klein, B. Advanced biofuels—Potential for cost reduction. IEA Bioenergy 2020, 88, 1–3. [Google Scholar]
- Advanced Biofuels Tracking Database. Available online: https://www.biofuelsdigest.com/bdigest/tag/advanced-biofuels-tracking-database/ (accessed on 12 July 2022).
- Statista. Average Annual Brent Crude Oil Price from 1976 to 2022. Available online: https://www.statista.com/statistics/262860/uk-brent-crude-oil-price-changes-since-1976/ (accessed on 10 July 2022).
- November, T.R. IEA. Oil Market Report. Available online: https://www.iea.org/reports/transport-biofuels (accessed on 11 July 2022).
- RFA. Annual World Fuel Ethanol Production. Available online: https://ethanolrfa.org/statistics/annualethanol-production/ (accessed on 10 July 2022).
- U.S. Department of Energy. Summary of Legislation and Regulations Included in the Annual Energy Outlook 2022 U.S. Department of Energy. Available online: https://www.eia.gov/outlooks/aeo/assumptions/pdf/summary.pdf (accessed on 9 July 2022).
- Renewable Energy—Recast to 2030 (RED II). Available online: https://joint-research-centre.ec.europa.eu/welcome-jec-website/reference-regulatory-framework/renewable-energy-recast-2030-red-ii_en (accessed on 15 July 2022).
- Biofuels Annual Report. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Biofuels%20Annual_The%20Hague_European%20Union_06-18-2021.pdf (accessed on 14 July 2022).
- Ortega, A.; Gkoumas, K.; Tsakalidis, A.; Pekár, F. Low-Emission Alternative Energy for Transport in the EU: State of Play of Research and Innovation. Energies 2021, 14, 7764. [Google Scholar] [CrossRef]
- Plante, L.; Sheehan, N.P.; Bier, P.; Murray, K.; Quell, K.; Ouellette, C.; Martinez, E. Bioenergy from biofuel residues and waste. Water Environ. Res. 2019, 91, 1199–1204. [Google Scholar] [CrossRef] [Green Version]
- Tsita, K.G.; Kiartzis, S.J.; Ntavos, N.K.; Pilavachi, P.A. Next generation biofuels derived from thermal and chemical conversion of the Greek transport sector. Therm. Sci. Eng. Prog. 2020, 17, 100387. [Google Scholar] [CrossRef]
- Oumer, A.N.; Hasan, M.M.; Baheta, A.T.; Mamat, R.; Abdullah, A.A. Bio-based liquid fuels as a source of renewable energy: A review. Renew. Sustain. Energy Rev. 2018, 88, 82–98. [Google Scholar] [CrossRef]
- Vignesh, P.; Pradeep Kumar, A.R.; Ganesh, N.S.; Jayaseelan, V.; Sudhakar, K. Biodiesel and green diesel generation: An overview. Oil Gas Sci. Technol. 2021, 76, 6. [Google Scholar] [CrossRef]
- Prussi, M.; O’Connell, A.; Lonza, L. Alternative aviation fuels: Assessment of supply potential in the EU. In Proceedings of the 26th European Biomass Conference and Exhibition Proceedings, Florence, Italy, 14–17 May 2018; pp. 1512–1515. [Google Scholar] [CrossRef]
- Pikula, K.; Zakharenko, A.; Stratidakis, A.; Razgonova, M.; Nosyrev, A.; Mezhuev, Y.; Tsatsakis, A.; Golokhvast, K. The advances and limitations in biodiesel production: Feedstocks, oil extraction methods, production, and environmental life cycle assessment. Green Chem. Lett. Rev. 2020, 13, 11–30. [Google Scholar] [CrossRef]
- Zore, Ž.; Čuček, L.; Kravanja, Z. Synthesis of sustainable production systems using an upgraded concept of sustainability profit and circularity. J. Clean. Prod. 2018, 201, 1138–1154. [Google Scholar] [CrossRef]
- Doliente, S.S.; Narayan, A.; Tapia, J.F.D.; Samsatli, N.J.; Zhao, Y.; Samsatli, S. Bio-aviation Fuel: A Comprehensive Review and Analysis of the Supply Chain Components. Front. Energy Res. 2020, 8, 110. [Google Scholar] [CrossRef]
- Cabrera, E.; Melo de Sousa, J.M. Use of Sustainable Fuels in Aviation—A Review. Energies 2022, 15, 2440. [Google Scholar] [CrossRef]
- Ahmad, S.; Xu, B. A cognitive mapping approach to analyse stakeholders’ perspectives on sustainable aviation fuels. Transp. Res. Part D Transp. Environ. 2021, 100, 103076. [Google Scholar] [CrossRef]
- Alam, A.; Masum, M.F.H.; Dwivedi, P. Break-even price and carbon emissions of carinata-based sustainable aviation fuel production in the Southeastern United States. GCB Bioenergy 2021, 13, 1800–1813. [Google Scholar] [CrossRef]
- Bauen, A.; Bitossi, N.; German, L.; Harris, A.; Leow, K. Sustainable Aviation Fuels: Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation. Johns. Matthey Technol. Rev. 2020, 64, 263–278. [Google Scholar] [CrossRef]
- Bullerdiek, N.; Neuling, U.; Kaltschmitt, M. A GHG reduction obligation for sustainableaviation fuels (SAF) in the EU and in Germany. J. Air Transp. Manag. 2021, 92, 102020. [Google Scholar] [CrossRef]
- Davis, M.R.; Kainer, D.; Tuskan, G.A.; Langholtz, M.H.; Hellwinckel, C.M.; Shedden, M.; Eaton, L. Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States. Biomass Bioenergy 2020, 143, 105807. [Google Scholar] [CrossRef]
- Amrullah, I.; Hambali, E. Bioethanol prospect from agricultural crops and its biomass in Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 24–25 August 2020; p. 012019. [Google Scholar] [CrossRef]
- Mat Aron, N.S.; Khoo, K.S.; Chew, K.W.; Show, P.L.; Chen, W.H.; Nguyen, T.H.P. Sustainability of the four generations of biofuels—A review. Int. J. Energy Res. 2020, 44, 9266–9282. [Google Scholar] [CrossRef]
- Gray, N.; McDonagh, S.; O’Shea, R.; Smyth, B.; Murphy, J.D. Decarbonising ships, planes and trucks: An analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Adv. Appl. Energy 2021, 1, 100008. [Google Scholar] [CrossRef]
- Lai, Y.Y.; Christley, E.; Kulanovic, A.; Teng, C.C.; Björklund, A.; Nordensvärd, J.; Karakaya, E.; Urban, F. Analysing the opportunities and challenges for mitigating the climate impact of aviation: A narrative review. Renew. Sustain. Energy Rev. 2022, 156, 111972. [Google Scholar] [CrossRef]
- Stolz, B.; Held, M.; Georges, G.; Boulouchos, K. Techno-economic analysis of renewable fuels for ships carrying bulk cargo in Europe. Nat. Energy 2022, 7, 203–212. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Dong, W.; Zhang, X.; Tyagi, R.D.; Drogui, P.; Surampalli, R.Y. The potential of microalgae in biodiesel production. Renew. Sustain. Energy Rev. 2018, 90, 336–346. [Google Scholar] [CrossRef]
- Kesieme, U.; Pazouki, K.; Murphy, A.; Chrysanthou, A. Biofuel as an alternative shipping fuel: Technological, environmental and economic assessment. Sustain. Energy Fuels 2019, 3, 899–909. [Google Scholar] [CrossRef] [Green Version]
- Mizik, T.; Gyarmati, G. Economic and sustainability of biodiesel production—A systematic literature review. Clean Technol. 2021, 3, 19–36. [Google Scholar] [CrossRef]
- Puricelli, S.; Cardellini, G.; Casadei, S.; Faedo, D.; van den Oever, A.E.M.; Grosso, M. A review on biofuels for light-duty vehicles in Europe. Renew. Sustain. Energy Rev. 2021, 137, 110398. [Google Scholar] [CrossRef]
- Ajanovic, A.; Haas, R. Renewable energy systems implementation in road transport: Prospects and impediments. Renew. Energy Environ. Sustain. 2021, 6, 39. [Google Scholar] [CrossRef]
- Renewable Fuel Standard US Department of Energy. Available online: https://afdc.energy.gov/laws/RFS (accessed on 10 July 2022).
- Miller, C.A. Characterizing Emissions from the Combustion of Biofuels; U.S. Environmental Protection Agency: Washington, DC, USA, 2008. [Google Scholar]
- Kumar, A.; Nerella, V.K.V. Experimental analysis of exhaust emissions from transit buses fuelled with biodiesel. Open Environ. Eng. J. 2009, 2, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Lozada, I.; Islas, J.; Grande, G. Environmental and economic feasibility of palm oil biodiesel in the Mexican transportation sector. Renew. Sustain. Energy Rev. 2010, 14, 486–492. [Google Scholar] [CrossRef]
- Yaqoob, H.; Teoh, Y.H.; Sher, F.; Farooq, M.U.; Jamil, M.A.; Kausar, Z.; Sabah, N.U.; Shah, M.F.; Rehman, H.Z.U.; Rehman, A.U. Potential of waste cooking oil biodiesel as renewable fuel in combustion engines: A review. Energies 2021, 14, 2565. [Google Scholar] [CrossRef]
- Keskin, A.; Yaşar, A.; Reşitoğlu, İ.; Akar, M.; Sugözü, İ. The influence of diesel fuel-biodiesel-ethanol-butanol blends on the performance and emission characteristics of a diesel engine. Energy Sources Part A Recovery Util. Environ. Eff. 2013, 35, 1873–1881. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Prathima, A.; Periyasamy, M.; Mahendran, G. Emission assessment of Kappaphycus Alvarezil-Brown algae biodiesel Al2O3 and C18H34O2. Mater. Today Proc. 2020, 33, 4192–4197. [Google Scholar] [CrossRef]
- Poulikidou, S.; Heyne, S.; Grahn, M.; Harvey, S.; Hansson, J. A comparative assessment of current and future fuels for the transport sector. In Proceedings of the 26th European Biomass Conference and Exhibition Proceedings, Florence, Italy, 14–17 May 2018; pp. 14–17. [Google Scholar] [CrossRef]
- Sharma, B.; Yu, T.-h.E.; English, B.C.; Boyer, C. Economic Analysis of Developing a Sustainable Aviation Fuel Supply Chain Incorporating with Carbon Credits: A Case Study of the Memphis International Airport. Front. Energy Res. 2021, 9, 775389. [Google Scholar] [CrossRef]
- Qin, Z.; Zhuang, Q.; Cai, X.; He, Y.; Huang, Y.; Jiang, D.; Lin, E.; Liu, Y.; Tang, Y.; Wang, M.Q. Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment. Renew. Sustain. Energy Rev. 2018, 82, 2387–2400. [Google Scholar] [CrossRef]
- Capaz, R.S.; Posada, J.A.; Osseweijer, P.; Seabra, J.E.A. The carbon footprint of alternative jet fuels produced in Brazil: Exploring different approaches. Resour. Conserv. Recycl. 2021, 166, 105260. [Google Scholar] [CrossRef]
- Millinger, M.; Meisel, K.; Budzinski, M.; Thrän, D. Relative greenhouse gas abatement cost competitiveness of biofuels in Germany. Energies 2018, 11, 615. [Google Scholar] [CrossRef] [Green Version]
- Palander, T.; Haavikko, H.; Kärhä, K. Towards sustainable wood procurement in forest industry—The energy efficiency of larger and heavier vehicles in Finland. Renew. Sustain. Energy Rev. 2018, 96, 100–118. [Google Scholar] [CrossRef]
- Usmani, R.A. Potential for energy and biofuel from biomass in India. Renew. Energy 2020, 155, 921–930. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ramesh, K.; Purnachandran, R.; Mohamed Shameer, P. A review on the properties, performance and emission aspects of the third generation biodiesels. Renew. Sustain. Energy Rev. 2018, 82, 2970–2992. [Google Scholar] [CrossRef]
- Rassoulinejad-Mousavi, S.M.; Mao, Y.; Zhang, Y. Reducing greenhouse gas emissions in Sandia methane-air flame by using a biofuel. Renew. Energy 2018, 128, 313–323. [Google Scholar] [CrossRef]
- Nour, M.; Elseesy, A.I.; Attia, A.; Li, X.; Nada, S. Adding n-butanol, n-heptanol, and n-octanol to improve vaporization, combustion, and emission characteristics of diesel/used frying oil biodiesel blends in DICI engine. Environ. Prog. Sustain. Energy 2021, 40, e13549. [Google Scholar] [CrossRef]
- Ibrahim, M.N.; Ali, A.H.H.; Ookawara, S. Performance assessment of turbojet engine operated with alternative biodiesel. In Proceedings of the ASME Power Conference, Boston, MA, USA, 29 July–1 August 2013. V001T001A026. [Google Scholar] [CrossRef]
- Ali, A.; Ibrahim, M. Performance and environmental impact of a turbojet engine fueled by blends of biodiesels. Int. J. Environ. Sci. Technol. 2017, 14, 1253–1266. [Google Scholar] [CrossRef]
- Stathatou, P.M.; Bergeron, S.; Fee, C.; Jeffrey, P.; Triantafyllou, M.; Gershenfeld, N. Towards decarbonization of shipping: Direct emissions & life cycle impacts from a biofuel trial aboard an ocean-going dry bulk vessel. Sustain. Energy Fuels 2022, 6, 1687–1697. [Google Scholar] [CrossRef]
- Attia, A.M.; Kulchitskiy, A.; Nour, M.; El-Seesy, A.I.; Nada, S.A. The influence of castor biodiesel blending ratio on engine performance including the determined diesel particulate matters composition. Energy 2022, 239, 121951. [Google Scholar] [CrossRef]
- Nursal, R.S.; Khalid, A.; Abdullah, I.S.; Jaat, N.; Darlis, N.; Koten, H. Autoignition behavior and emission of biodiesel from palm oil, waste cooking oil, tyre pyrolysis oil, algae and jatropha. Fuel 2021, 306, 121695. [Google Scholar] [CrossRef]
- Abdullah, B.; Muhammad, S.A.F.a.S.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A.N.; Aziz, M.M.A. Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sustain. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
- Yaşar, F.; Altun, Ş. The effect of microalgae biodiesel on combustion, performance, and emission characteristics of a diesel power generator. Therm. Sci. 2018, 22, 1481–1492. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ. Chem. Lett. 2020, 18, 1049–1072. [Google Scholar] [CrossRef]
- Wang, Z.; Kamali, F.P.; Osseweijer, P.; Posada, J.A. Socioeconomic effects of aviation biofuel production in Brazil: A scenarios-based Input-Output analysis. J. Clean. Prod. 2019, 230, 1036–1050. [Google Scholar] [CrossRef]
- Kamali, F.P.; Borges, J.A.R.; Osseweijer, P.; Posada, J.A. Towards social sustainability: Screening potential social and governance issues for biojet fuel supply chains in Brazil. Renew. Sustain. Energy Rev. 2018, 92, 50–61. [Google Scholar] [CrossRef]
2011–2020 Average | Argentina | Brazil | China | The EU | India | Indonesia | The USA |
---|---|---|---|---|---|---|---|
Wheat harvested area for biofuels (th. Ha) | 0 | 0 | 3407 | 877 | 3 | 0 | 0 |
Wheat ethanol production (liters, millions) | 0 | 0 | 685 | 1542 | 2 | 0 | 0 |
Maize harvested area for biofuels (th. Ha) | 324 | 463 | 3060 | 618 | 2 | 0 | 16,845 |
Ethanol production from maize (liters, millions) | 419 | 775 | 7074 | 2091 | 2 | 0 | 56,163 |
Vegetable oil harvested area for biofuels (th. Ha) | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Biodiesel production from vegetable oil (liters, millions) | 2616 | 3213 | 0 | 11,268 | 73 | 3475 | 3352 |
Sugar cane harvested area for biofuels (th. Ha) | 395 | 8654 | 4845 | 0 | 0 | 436 | 0 |
Ethanol production from sugar cane (liters, millions) | 443 | 25,068 | 10 | 0 | 0 | 0 | 0 |
Ethanol production (liters, millions) | 912 | 28,835 | 9551 | 5875 | 2348 | 200 | 57,036 |
Ethanol imports (liters, millions) | 9 | 1019 | 306 | 824 | 313 | 11 | 1305 |
Ethanol consumption (liters, millions) | 898 | 27,817 | 9783 | 6088 | 2529 | 134 | 54,090 |
Ethanol exports (liters, millions) | 14 | 2000 | 79 | 603 | 131 | 76 | 4317 |
Biodiesel production (liters, millions) | 2616 | 4105 | 984 | 13,517 | 164 | 3904 | 6539 |
Biodiesel imports (liters, millions) | 0 | 2 | 390 | 2560 | 5 | 0 | 1573 |
Biodiesel consumption (liters, millions) | 1103 | 4086 | 1158 | 14,971 | 142 | 2820 | 7633 |
Biodiesel exports (liters, millions) | 1506 | 14 | 216 | 1099 | 26 | 1084 | 421 |
Biofuel Production Pathway | Default GHG Emission Savings | Typical GHG Emission Savings |
---|---|---|
Maize ethanol | 49% | 56% |
Sugar cane ethanol | 71% | 71% |
Rapeseed biodiesel | 38% | 45% |
Soybean biodiesel | 31% | 40% |
Waste/farmed wood ethanol | 74%/70% | 80%/76% |
Waste/farmed wood Fischer–Tropsch diesel | 95%/93% | 95%/93% |
Biofuels | CO2 Savings | SO2 Savings | NOx Savings | References |
---|---|---|---|---|
First-generation soy biodiesel | 16% | 15% | −12% | [49] |
First-generation animal biodiesel | 14% | 11% | −18% | [49] |
First-generation biodiesel | 11–23% | 5% | −15% | [50] |
First-generation palm oil biodiesel | 3.7% | 8% | −10% | [51] |
Second-generation waste cooking oil biodiesel | 85% | 85% | −19.7% | [52] |
Second-generation trap grease biodiesel | 85% | n.a. | −5.4% | [53,54] |
Third-generation algae | 1% | 5–11% | −4% | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizik, T.; Gyarmati, G. Three Pillars of Advanced Biofuels’ Sustainability. Fuels 2022, 3, 607-626. https://doi.org/10.3390/fuels3040037
Mizik T, Gyarmati G. Three Pillars of Advanced Biofuels’ Sustainability. Fuels. 2022; 3(4):607-626. https://doi.org/10.3390/fuels3040037
Chicago/Turabian StyleMizik, Tamás, and Gábor Gyarmati. 2022. "Three Pillars of Advanced Biofuels’ Sustainability" Fuels 3, no. 4: 607-626. https://doi.org/10.3390/fuels3040037
APA StyleMizik, T., & Gyarmati, G. (2022). Three Pillars of Advanced Biofuels’ Sustainability. Fuels, 3(4), 607-626. https://doi.org/10.3390/fuels3040037