Performance of Citric Acid as a Catalyst and Support Catalyst When Synthesized with NaOH and CaO in Transesterification of Biodiesel from Black Soldier Fly Larvae Fed on Kitchen Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Black Soldier Fly Larvae (BSFL) Rearing
2.2. Oil Extraction
2.3. Preparation of the Catalysts
2.4. Characterization of the Catalysts
2.5. Experimental Design and Statistical Analysis
2.6. Transesterification Reaction
2.7. Biodiesel Characterization
2.8. Catalysts Recyclability
3. Results and Discussion
3.1. Characterization of CaO/CA and NaOH/CA Catalysts
Surface Morphology and Crystalline Structure of Synthesized Catalysts
3.2. Central Composite Design (CCD) Analysis for Biodiesel Yield
3.3. Assessment of Catalytic Performance in Transesterification of BSFL Oil
3.3.1. Effects of Citric Acid Loading wt.% on CaO and NaOH on Biodiesel Yield
3.3.2. Effects of Synthesis Temperatures on Biodiesel Yield
3.3.3. Effect of Calcination Temperatures and Time on Biodiesel Yield
3.4. Composition and Fuel Properties of BSFL-Based Oil and Biodiesel
3.5. Performance of The Synthesized Catalysts in Successive Reuse Cycles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiaramonti, D.; Talluri, G.; Scarlat, N.; Prussi, M. The challenge of forecasting the role of biofuel in EU transport decar-bonisation at 2050: A meta-analysis review of published scenarios. Renew. Sustain. Energy Rev. 2021, 139, 110715. [Google Scholar] [CrossRef]
- Avinash, A.; Murugesan, A. Economic analysis of biodiesel production from waste cooking oil. Energy Sources Part B Econ. Plan. Policy 2017, 12, 892–894. [Google Scholar] [CrossRef]
- Melero, J.A.; Sánchez-Vázquez, R.; Vasiliadou, I.A.; Martínez Castillejo, F.; Bautista, L.F.; Iglesias, J.; Morales, G.; Molina, R. Municipal sewage sludge to biodiesel by simultaneous extraction and conversion of lipids. Energy Convers. Manag. 2015, 103, 111–118. [Google Scholar] [CrossRef]
- Davis, R.; Aden, A.; Pienkos, P.T. Techno-economic analysis of autotrophic microalgae for fuel production. Appl. Energy 2011, 88, 3524–3531. [Google Scholar] [CrossRef]
- Karmee, S.K.; Linardi, D.; Lee, J.; Lin, C.S.K. Conversion of lipid from food waste to biodiesel. Waste Manag. 2015, 41, 169–173. [Google Scholar] [CrossRef]
- Wong, C.Y.; Rosli, S.S.; Uemura, Y.; Ho, Y.C.; Leejeerajumnean, A.; Kiatkittipong, W.; Cheng, C.K.; Lam, M.-K.; Lim, J.W. Potential protein and biodiesel sources from black soldier fly larvae: Insights of larval harvesting instar and fermented feeding medium. Energies 2019, 12, 1570. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Qian, L.; Wang, W.; Wang, T.; Deng, Z.; Yang, F.; Xiong, J.; Feng, W. Exploring the potential of lipids from black soldier fly: New paradigm for biodiesel production (I). Renew. Energy 2017, 111, 749–756. [Google Scholar] [CrossRef]
- Srivastava, N.; Srivastava, M.; Mishra, P.K.; Gupta, V.K. Substrate Analysis for Effective Biofuels Production; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Baskar, G.; Aiswarya, R. Trends in catalytic production of biodiesel from various feedstocks. Renew. Sustain. Energy Rev. 2016, 57, 496–504. [Google Scholar] [CrossRef]
- Aransiola, E.F.; Ojumu, T.V.; Oyekola, O.O.; Madzimbamuto, T.F. A review of current technology for biodiesel production: State of the art. Biomass Bioenergy 2015, 61, 276–297. [Google Scholar] [CrossRef]
- Gebremariam, S.N.; Marchetti, J.M. Biodiesel production technologies: Review. AIMS Energy 2017, 5, 425–457. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Liang, S.-H.; Doan, T.T.; Su, C.-H.; Yang, P.-C. Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology. Energy Convers. Manag. 2018, 145, 335–342. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.L.; Sharma, S.; Sharma, P.K. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2019, 262, 116553. [Google Scholar] [CrossRef]
- Gnanaprakasam, A.; Sivakumar, V.M.; Surendhar, A.; Thirumarimurugan, M.; Kannadasan, T. Recent Strategy of Biodiesel Production from Waste Cooking Oil and Process Influencing Parameters: A Review. J. Energy 2013, 2013, 926392. [Google Scholar] [CrossRef] [Green Version]
- Thangaraj, B.; Solomon, P.R.; Muniyandi, B.; Ranganathan, S.; Lin, L. Catalysis in biodiesel production—A review. Clean Energy 2019, 3, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Rizwanul Fattah, I.M.; Ong, H.C.; Mahlia, T.M.I.; Mofijur, M.; Silitonga, A.S.; Ashrafur Rahman, S.M.; Ahmad, A. State of the Art of Catalysts for Biodiesel Production. Front. Energy Res. 2020, 8, 101. [Google Scholar] [CrossRef]
- Nasreen, S.; Nafees, M.; Qureshi, L.A.; Asad, M.S.; Sadiq, A.; Ali, S.D. Review of Catalytic Transesterification Methods for Biodiesel Production. In Biofuels—State of Development; IntechOpen: London, UK, 2018; pp. 94–111. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Kolar, P.; Peretti, S.W.; Osborne, J.A.; Cheng, J.J. Effect of preparation conditions on structure and activity of sodi-um-impregnated oyster shell catalysts for transesterification. Catalysts 2018, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Alagumalai, A.; Mahian, O.; Hollmann, F.; Zhang, W. Science of the Total Environment Environmentally benign solid catalysts for sustainable biodiesel production: A critical review. Sci. Total Environ. 2021, 768, 144856. [Google Scholar] [CrossRef]
- Shan, R.; Lu, L.; Shi, Y.; Yuan, H.; Shi, J. Catalysts from renewable resources for biodiesel production. Energy Convers. Manag. 2018, 178, 277–289. [Google Scholar] [CrossRef]
- Goli, J.; Sahu, O. Development of heterogeneous alkali catalyst from waste chicken eggshell for biodiesel production Development of heterogeneous alkali catalyst from waste chicken eggshell for biodiesel production. Renew. Energy 2020, 128, 142–154. [Google Scholar] [CrossRef]
- Vieira, S.S.; Magriotis, Z.M.; Ribeiro, M.F.; Graça, I.; Fernandes, A.; Lopes, J.M.F.M.; Coelho, S.M.; Santos, N.A.V.; Saczk, A.A. Use of HZSM-5 modified with citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid. Microporous Mesoporous Mater. 2015, 201, 160–168. [Google Scholar] [CrossRef]
- Sistani, A.; Saghatoleslami, N.; Nayebzadeh, H. Influence of calcination temperature on the activity of mesoporous CaO/TiO2–ZrO2 catalyst in the esterification reaction. J. Nano Struct. Chem. 2018, 8, 321–331. [Google Scholar] [CrossRef]
- Meng, D.; Wang, B.; Yu, W.; Wang, W.; Li, Z.; Ma, X. Effect of Citric Acid on MoO3/Al2O3 Catalysts for Sulfur-Resistant Methanation. Catalysts 2017, 7, 151. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, Y.; Gao, Y.; Zhong, L.; Zou, Q.; Lai, X. Preparation and properties of calcium citrate nanosheets for bone graft sub-stitute. Bioengineered 2016, 7, 376–381. [Google Scholar] [CrossRef]
- Karthikeyan, B.; Govindhan, R.; Amutheesan, M. Chemical Methods for Synthesis of Hybrid Nanoparticles. In Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- de Almeida, R.M.; Noda, L.K.; Gonçalves, N.S.; Meneghetti, S.M.P.; Meneghetti, M.R. Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts. Appl. Catal. A Gen. 2008, 347, 100–105. [Google Scholar] [CrossRef]
- Venkatesha, N.J.; Ramesh, S. Citric Acid-Assisted Synthesis of Nanoparticle Copper Catalyst Supported on an Oxide System for the Reduction of Furfural to Furfuryl Alcohol in the Vapor Phase. Ind. Eng. Chem. Res. 2018, 57, 1506–1515. [Google Scholar] [CrossRef]
- Labet, M.; Thielemans, W. Citric acid as a benign alternative to metal catalysts for the production of cellu-lose-grafted-polycaprolactone copolymers. Polym. Chem. 2012, 3, 679–684. [Google Scholar] [CrossRef]
- Banković-Ilić, I.B.; Miladinović, M.R.; Stamenković, O.S.; Veljković, V.B. Application of nano CaO–based catalysts in biodiesel synthesis. Renew. Sustain. Energy Rev. 2017, 72, 746–760. [Google Scholar] [CrossRef]
- Wen, L.; Wang, Y.; Lu, D.; Hu, S.; Han, H. Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 2010, 89, 2267–2271. [Google Scholar] [CrossRef]
- Helwani, Z.; Othman, M.R.; Aziz, N.; Kim, J.; Fernando, W.J.N. Solid heterogeneous catalysts for transesterification of tri-glycerides with methanol: A review. Appl. Catal. A Gen. 2009, 363, 1–10. [Google Scholar] [CrossRef]
- Sihaib, Z.; Puleo, F.; Pantaleo, G.; Parola, V.; La Valverde, L.; Gil, S.; Liotta, L.F.; Giroir-fendler, A. The Effect of Citric Acid Concentration on the Properties of LaMnO3 as a Catalyst for Hydrocarbon Oxidation. Catalysts 2019, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Kaduk, J.A. Crystal structures of tricalcium citrates. Powder Diffr. 2018, 33, 98–107. [Google Scholar] [CrossRef]
- Rammohan, A.; Kaduk, J.A. Trisodium citrate, Na3(C6H5O7). Acta Crystallogr. Sect. E Crystallogr. Commun. 2016, 72, 793–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herdtweck, E.; Kornprobst, T.; Sieber, R.; Straver, L.; Plank, J. Crystal structure, synthesis, and properties of tri-Calcium di-citrate tetra-hydrate [Ca3(C6H5O7) 2(H2O)2]·2H2O. Z. Fur Anorg. Und Allg. Chem. 2011, 637, 655–659. [Google Scholar] [CrossRef]
- Wang, B.W.; Meng, D.J.; Wang, W.H.; Li, Z.H.; Ma, X.B. Effect of citric acid addition on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation. J. Fuel Chem. Technol. 2016, 44, 1479–1484. [Google Scholar] [CrossRef]
- Radfarnia, H.R.; Iliuta, M.C. Limestone acidification using citric acid coupled with two-step calcination for improving the CO2 sorbent activity. Ind. Eng. Chem. Res. 2013, 52, 7002–7013. [Google Scholar] [CrossRef]
- Macina, A.; De Medeiros, T.V.; Naccache, R. A carbon dot-catalyzed transesterification reaction for the production of biodiesel. J. Mater. Chem. A 2019, 7, 23794–23802. [Google Scholar] [CrossRef]
- Yao, J.; Gao, J.; Yao, J.; Zhu, B. Method for Preparing Anhydrous Trisodium Citrate. China Patent No. PCT/CN2016/108193, 2016. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018094757&tab=FULLTEXT (accessed on 9 March 2021).
- Zheng, L.; Li, Q.; Zhang, J.; Yu, Z. Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renew. Energy 2012, 41, 75–79. [Google Scholar] [CrossRef]
- Bhargavi, G.; Nageswara Rao, P.; Renganathan, S. Review on the Extraction Methods of Crude oil from all Generation Biofuels in last few Decades. IOP Conf. Ser. Mater. Sci. Eng. 2018, 330, 012024. [Google Scholar] [CrossRef] [Green Version]
- Kandaramath Hari, T.; Yaakob, Z. Effect of calcination temperature on the application of sodium zirconate solid base catalyst for biodiesel production from Jatropha curcas oil. Int. J. Green Energy 2017, 14, 1163–1171. [Google Scholar] [CrossRef]
- Tanabe 2020, K.; Yamaguch, T. Basicity and Acidity of Solid Surfaces. J. Res. Inst. Catal. 1964, 11, 179–184. [Google Scholar]
- Anr, R.; Saleh, A.A.; Islam, S.; Hamdan, S.; Maleque, A. Biodiesel Production from Crude Jatropha Oil using a Highly Active Heterogeneous Nanocatalyst by Optimizing Transesteri fi cation Reaction Parameters. Energy Fuels 2015, 30, 334–343. [Google Scholar] [CrossRef]
- Asakuma, Y.; Maeda, K.; Kuramochi, H.; Fukui, K. Theoretical study of the transesterification of triglycerides to biodiesel fuel. Fuel 2009, 88, 786–791. [Google Scholar] [CrossRef]
- Musa, I.A. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt. J. Pet. 2016, 25, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Thanh, L.T.; Okitsu, K.; Boi, L.; Van Maeda, Y. Catalytic Technologies for Biodiesel Fuel Production and Utilization of Glycerol: A Review. Catalysts 2012, 2, 191–222. [Google Scholar] [CrossRef] [Green Version]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Trejo-Zárraga, F.; de Jesús Hernández-Loyo, F.; Juan, C.C.-H.; Sotelo-Boyás, R. Kinetics of Transesterification Processes for Bio-diesel Production. In Biofuels—State of Development; IntechOpen: London, UK, 2018; p. 13. [Google Scholar] [CrossRef] [Green Version]
- Lawan, I.; Garba, Z.N.; Zhou, W.; Zhang, M.; Yuan, Z. Synergies between the microwave reactor and CaO/zeolite catalyst in waste lard biodiesel production. Renew. Energy 2020, 145, 2550–2560. [Google Scholar] [CrossRef]
- ASTM D6751-09; Standard Specification for Biodiesel Fuel Blend Stock (B100) For Middle Distillate Fuels. ASTM International: West Conshohocken, PA, USA, 2009. [CrossRef]
- Jiang, X.C.; Chen, C.Y.; Chen, W.M.; Yu, A.B. Role of citric acid in the formation of silver nanoplates through a synergistic reduction approach. Langmuir 2010, 26, 4400–4408. [Google Scholar] [CrossRef]
- Tao, G.; Hua, Z.; Gao, Z.; Zhu, Y.; Zhu, Y.; Chen, Y.; Shu, Z.; Zhang, L.; Shi, J. KF-loaded mesoporous Mg–Fe bi-metal oxides: High performance transesterification catalysts for biodiesel production. Chem. Commun. 2013, 49, 8006–8008. [Google Scholar] [CrossRef] [Green Version]
- Mierczynski, P.; Szkudlarek, L.; Chalupka, K.; Maniukiewicz, W.; Wahono, S.K.; Vasilev, K.; Szynkowska-jozwik, M.I. The Effect of the Activation Process and Metal Oxide Addition (CaO, MgO, SrO) on the Catalytic and Physicochemical Properties of Natural Zeolite in Transesterification Reaction. Materials 2021, 14, 2415. [Google Scholar] [CrossRef]
- Tang 1963, Y.; Xu, J.; Zhang, J.; Lu, Y. Biodiesel production from vegetable oil by using modified CaO as solid basic catalysts. J. Clean. Prod. 2013, 42, 198–203. [Google Scholar] [CrossRef]
- Yao, M.; Yao, N.; Liu, B.; Li, S.; Xu, L.; Li, X. Effect of SiO2/Al2O3 ratio on the activities of CoRu/ZSM-5 Fischer-Tropsch synthesis catalysts. Catal. Sci. Technol. 2015, 5, 2821–2828. [Google Scholar] [CrossRef]
- Wong, Y.C.; Tan, Y.P.; Taufiq-Yap, Y.H.; Ramli, I. Effect of calcination temperatures of CaO/Nb2O5 Mixed Oxides Catalysts on Biodiesel Production. Sains Malays. 2014, 43, 783–790. [Google Scholar]
- Tsai, W.T.; Yang, J.M.; Lai, C.W.; Cheng, Y.H.; Lin, C.C.; Yeh, C.W. Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol. 2006, 97, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Akmaliyah, M. Highly Active CaO for the Transesterification to Biodiesel Production from Rapeseed Oil. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar]
- Ahmad, R.; Rohim, R.; Ibrahim, N. Properties of Waste Eggshell as Calcium Oxide Catalyst. Appl. Mech. Mater. 2015, 754–755, 171–175. [Google Scholar] [CrossRef]
- Giri, A.; Makhal, A.; Ghosh, B.; Raychaudhuri, A.K.; Pal, S.K. Functionalization of manganite nanoparticles and their inter-action with biologically relevant small ligands: Picosecond time-resolved FRET studies. Nanoscale 2010, 2, 2704–2709. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Jiang, Q.; Zhao, L. Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water. Dalton Trans. 2012, 41, 4544–4551. [Google Scholar] [CrossRef]
- Ding, Z.; Xu, W.; Zhang, X.; Liu, Z.; Shen, J.; Liang, J.; Jiang, M.; Ren, X. Controllable Acid/Base Propriety of Sulfate Modified Mixed Metal Oxide Derived from Hydrotalcite for Synthesis of Propylene Carbonate. Catalysts 2019, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- Arboleda, A.; Franco, M.; Caicedo, J.; Tirado, L.; Goyes, C. Synthesis and chemical and structural characterization of hy-droxyapatite obtained from eggshell and tricalcium phosphate. Ing. Y Compet. 2016, 18, 69. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Bhattacharya, J. Microwave-assisted synthesis and characterization of CaO nanoparticles. Int. J. Nanosci. 2011, 10, 413–418. [Google Scholar] [CrossRef]
- Arzamendi, G.; Campo, I.; Arguiñarena, E.; Sánchez, M.; Montes, M.; Gandía, L.M. Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH. Chem. Eng. J. 2007, 134, 123–130. [Google Scholar] [CrossRef]
- Salem, M.A.; Bakr, E.A.; El-Attar, H.G. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 188, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zheng, L.; Cai, H.; Garza, E.; Yu, Z.; Zhou, S. From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel 2011, 90, 1545–1548. [Google Scholar] [CrossRef]
- Pang, W.; Hou, D.; Ke, J.; Chen, J.; Holtzapple, M.T.; Tomberlin, J.K.; Chen, H.; Zhang, J.; Li, Q. Production of biodiesel from CO2 and organic wastes by fermentation and black soldier fly. Renew. Energy 2020, 149, 1174–1181. [Google Scholar] [CrossRef]
- Qing, L.; Zheng, L.; Qiu, N.; Cai, H.; Tomberlin, J.K.; Yu, Z. Bioconversion of dairy manure by black soldier fly (Diptera:Stratiomyidae) for biodiesel and sugar production. Waste Manag. 2011, 31, 1316–1320. [Google Scholar] [CrossRef]
- Serrano, M.; Bouaid, A.; Martínez, M.; Aracil, J. Oxidation stability of biodiesel from different feedstocks: Influence of com-mercial additives and purification step. Fuel 2013, 113, 50–58. [Google Scholar] [CrossRef]
- Peer, M.S.; Kasimani, R.; Rajamohan, S.; Ramakrishnan, P. Experimental evaluation on oxidation stability of biodiesel/diesel blends with alcohol addition by rancimat instrument and FTIR spectroscopy. J. Mech. Sci. Technol. 2017, 31, 455–463. [Google Scholar] [CrossRef]
- Joven, J.M.O.; Gadian, J.T.; Perez, M.A.; Caingles, J.G.; Mansalaynon, A.P.; Ido, A.L.; Arazo, R.O. Optimized ultrasonic-assisted oil extraction and biodiesel production from the seeds of Maesopsis eminii. Ind. Crops Prod. 2020, 155, 112772. [Google Scholar] [CrossRef]
- Lawan, I.; Zhou, W.; Idris, A.L.; Jiang, Y.; Zhang, M.; Wang, L.; Yuan, Z. Synthesis, properties and effects of a multi-functional biodiesel fuel additive. Fuel Process. Technol. 2020, 198, 106228. [Google Scholar] [CrossRef]
- Leong, S.Y.; Kutty, S.R.M.; Malakahmad, A.; Tan, C.K. Feasibility study of biodiesel production using lipids of Hermetia illucens larva fed with organic waste. Waste Manag. 2016, 47, 84–90. [Google Scholar] [CrossRef]
- De Sousa, F.P.; Dos Reis, G.P.; Cardoso, C.C.; Mussel, W.N.; Pasa, V.M.D. Performance of CaO from different sources as a catalyst precursor in soybean oil transesterification: Kinetics and leaching evaluation. J. Environ. Chem. Eng. 2016, 4. [Google Scholar] [CrossRef]
- Pandit, P.R.; Fulekar, M.H. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology. J. Environ. Manag. 2017, 198, 319–329. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Element Composition (%) | SiO/AL | Basicity (mmol/g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MgO | Al2O3 | SiO2 | P2O5 | CaO | Mn | Fe | Ti | |||
NaOH/3%CA-600 °C | 72.59 | 0.17 | 22.24 | 0.00 | 1.32 | 0.15 | 1.59 | 1.33 | 127.79 | 1.70 |
NaOH/66.5%CA-600 °C | 71.02 | 0.17 | 22.52 | 0.27 | 2.30 | 0.32 | 2.48 | 0.76 | 130.95 | 2.45 |
NaOH/130%CA-600 °C | 71.96 | 0.17 | 22.99 | 0.12 | 2.65 | 0.31 | 1.21 | 0.90 | 133.67 | 3.61 |
NaOH/130%CA-300 °C | 72.03 | 0.15 | 21.38 | 0.00 | 2.47 | 0.29 | 1.31 | 1.36 | 143.46 | - |
NaOH/130%CA-900 °C | 70.68 | 0.17 | 23.80 | 0.00 | 3.25 | 0.22 | 1.15 | 0.90 | 144.23 | 5.33 |
CaO/3%CA-900 °C | 0.20 | 0.93 | 0.05 | 0.80 | 96.39 | 0.01 | 0.18 | 1.00 | 0.06 | - |
CaO/66.5%CA-900 °C | 0.11 | 0.63 | 0.45 | 0.81 | 96.19 | 0.01 | 0.00 | 0.00 | 0.71 | 8.70 |
CaO/130%CA-900 °C | 3.41 | 0.55 | 0.50 | 0.97 | 93.36 | 0.01 | 0.18 | 0.02 | 0.91 | 2.65 |
CaO/66.5%CA-300 °C | 3.77 | 1.83 | 0.21 | 0.81 | 91.40 | 0.25 | 0.00 | 0.00 | 0.12 | 0.25 |
CaO/66.5%CA-600 °C | 1.05 | 1.01 | 1.02 | 0.20 | 96.21 | 0.00 | 0.16 | 0.00 | 1.01 | 7.08 |
CaO | 0.00 | 1.52 | 0.03 | 0.26 | 97.51 | 0.02 | 0.17 | 0.03 | 0.02 | - |
CA | 86.99 | 0.00 | 4.90 | 0.02 | 3.91 | 0.00 | 2.85 | 0.15 | 0.00 | - |
Catalyst | Crystallite Size (nm) | Crystallinity (%) | Relative Cross Section Size (μm) * | Biodiesel Yield (%) |
---|---|---|---|---|
NaOH/130%CA-300 °C | 86.35 | 52.65 | 1.94 | 66.5 |
NaOH/130%CA-600 °C | 56.98 | 69.00 | 1.46 | 93 |
NaOH/130%CA-900 °C | 54.73 | 63.53 | 1.44 | 88.5 |
CaO/66.5%CA-300 °C | 56.80 | 5.76 | 1.78 | 52.5 |
CaO/66.5%CA-600 °C | 49.71 | 64.70 | 1.35 | 90.5 |
CaO/66.5%CA-900 °C | 56.80 | 67.09 | 1.41 | 91.5 |
CaO | 70.58 | 64.92 | 1.6 | 92.05 |
Std | Block | Run | Independent Variables | Biodiesel Yield (%) | Biodiesel Yield (%) | |||
---|---|---|---|---|---|---|---|---|
X1: | X2: | X3: | X4: | CaO/CA | NaOH/CA | |||
CA Loading (wt.%) | Synthesis Temperature (°C) | Calcination Temperature (°C) | Calcination Time (Minutes) | |||||
14 | Set 1 | 1 | 130 | 80 | 900 | 240 | 78.25 | 86.55 |
15 | Set 1 | 2 | 3 | 200 | 900 | 240 | 88.55 | 50.2 |
2 | Set 1 | 3 | 130 | 80 | 300 | 90 | 48.2 | 65.5 |
3 | Set 1 | 4 | 3 | 200 | 300 | 90 | 68.15 | 48.55 |
12 | Set 1 | 5 | 130 | 200 | 300 | 240 | 50 | 75.15 |
5 | Set 1 | 6 | 3 | 80 | 900 | 90 | 88.55 | 60 |
9 | Set 1 | 7 | 3 | 80 | 300 | 240 | 60 | 58.5 |
18 | Set 1 | 8 | 66.5 | 140 | 600 | 165 | 78.25 | 80 |
8 | Set 1 | 9 | 130 | 200 | 900 | 90 | 75.5 | 76.44 |
17 | Set 1 | 10 | 66.5 | 140 | 600 | 165 | 60.25 | 80.75 |
1 | Set 2 | 11 | 3 | 80 | 300 | 90 | 42.5 | 52.16 |
4 | Set 2 | 12 | 130 | 200 | 300 | 90 | 38 | 70 |
10 | Set 2 | 13 | 130 | 80 | 300 | 240 | 40.5 | 88.25 |
16 | Set 2 | 14 | 130 | 200 | 900 | 240 | 90 | 74 |
6 | Set 2 | 15 | 130 | 80 | 900 | 90 | 90.5 | 86.66 |
19 | Set 2 | 16 | 66.5 | 140 | 600 | 165 | 90 | 80 |
7 | Set 2 | 17 | 3 | 200 | 900 | 90 | 90 | 55.05 |
20 | Set 2 | 18 | 66.5 | 140 | 600 | 165 | 75.25 | 89.5 |
13 | Set 2 | 19 | 3 | 80 | 900 | 240 | 91.5 | 60 |
11 | Set 2 | 20 | 3 | 200 | 300 | 240 | 58 | 50.55 |
25 | Set 3 | 21 | 66.5 | 140 | 0 | 165 | 0 | 0 |
29 | Set 3 | 22 | 66.5 | 140 | 600 | 165 | 91.5 | 92.24 |
22 | Set 3 | 23 | 193.5 | 140 | 600 | 165 | 56.15 | 93.15 |
21 | Set 3 | 24 | -60.5 | 140 | 600 | 165 | 88.5 | 70.15 |
23 | Set 3 | 25 | 66.5 | 20 | 600 | 165 | 62.5 | 45.52 |
24 | Set 3 | 26 | 66.5 | 260 | 600 | 165 | 50 | 25.5 |
26 | Set 3 | 27 | 66.5 | 140 | 1200 | 165 | 80.5 | 46.5 |
27 | Set 3 | 28 | 66.5 | 140 | 600 | 15 | 48.11 | 35.15 |
30 | Set 3 | 29 | 66.5 | 140 | 600 | 165 | 78.25 | 80.55 |
28 | Set 3 | 30 | 66.5 | 140 | 600 | 315 | 91.05 | 92 |
Fatty Acid | The Numbers Denote the Number of Carbons and Double Bonds | Relative Content (%) | ||
---|---|---|---|---|
NaOH/CA | CaO/CA | CaO | ||
Nanoic acid | C9:0 | 0.02% | 0.03% | 0.03% |
Dodecane | _ | 0.08% | 0.17% | 0.12% |
Caproic acid | C10:0 | 0.66% | 0.37% | 0.66% |
Lauric acid | C12:0 | 36.00% | 41.22% | 41.29% |
Myristic acid | C14:0 | 11.92% | 11.47% | 12.33% |
Pentadecanoic acid | C15:0 | 0.08% | 0.08% | 0.09% |
Palmitoleic acid | C16:1 | 0.45% | 0.12% | 0.11% |
Palmitic acid | C16:0 | 21.28% | 18.36% | 16.12% |
Heptadecanoic acid | C17:0 | 0.14% | 0.35% | 0.44% |
Oleic acid | C18:1 | 25.70% | 24.61% | 24.00% |
Stearic acid | C18:0 | 3.12% | 2.46% | 3.66% |
Linoleic acid | C18:2 | 0.46% | 0.63% | 1.03% |
Linolenic acid | C18:3 | 0.05% | 0.07% | 0.08% |
Nonadecanoic acid | C19:0 | 0.04% | 0.06% | 0.04% |
Saturated Fatty Acids (SFA) | 73.26% | 74.40% | 74.66% | |
Monounsaturated Fatty Acids (MUFA) | 26.15% | 24.73% | 24.11% | |
Polyunsaturated Fatty Acids (PUFA) | 0.51% | 0.70% | 1.11% |
Properties | EN14214 | Biodiesel from BSFL |
---|---|---|
Density (kg/m3) | 860–900 | 862.2–868.4 |
Kinematic viscosity at 40 °C (mm2/s) | 2.5–6.0 | 4.2–5 |
Acid number (mg KOH/g) | 0.5 | 0.31–0.44 |
Refractive index 40 °C | _ | 1.4535–1.4461 |
Calorific value (Mj/kg) | _ | 37.8–39.14 |
Polyunsaturated methyl esters | <1% | 0.51–1.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kathumbi, L.K.; Home, P.G.; Raude, J.M.; Gathitu, B.B. Performance of Citric Acid as a Catalyst and Support Catalyst When Synthesized with NaOH and CaO in Transesterification of Biodiesel from Black Soldier Fly Larvae Fed on Kitchen Waste. Fuels 2022, 3, 295-315. https://doi.org/10.3390/fuels3020018
Kathumbi LK, Home PG, Raude JM, Gathitu BB. Performance of Citric Acid as a Catalyst and Support Catalyst When Synthesized with NaOH and CaO in Transesterification of Biodiesel from Black Soldier Fly Larvae Fed on Kitchen Waste. Fuels. 2022; 3(2):295-315. https://doi.org/10.3390/fuels3020018
Chicago/Turabian StyleKathumbi, Lilies K., Patrick G. Home, James M. Raude, and Benson B. Gathitu. 2022. "Performance of Citric Acid as a Catalyst and Support Catalyst When Synthesized with NaOH and CaO in Transesterification of Biodiesel from Black Soldier Fly Larvae Fed on Kitchen Waste" Fuels 3, no. 2: 295-315. https://doi.org/10.3390/fuels3020018
APA StyleKathumbi, L. K., Home, P. G., Raude, J. M., & Gathitu, B. B. (2022). Performance of Citric Acid as a Catalyst and Support Catalyst When Synthesized with NaOH and CaO in Transesterification of Biodiesel from Black Soldier Fly Larvae Fed on Kitchen Waste. Fuels, 3(2), 295-315. https://doi.org/10.3390/fuels3020018