
Citation: Kathumbi, L.K.; Home, P.G.;

Raude, J.M.; Gathitu, B.B.

Performance of Citric Acid as a

Catalyst and Support Catalyst When

Synthesized with NaOH and CaO in

Transesterification of Biodiesel from

Black Soldier Fly Larvae Fed on

Kitchen Waste. Fuels 2022, 3, 295–315.

https://doi.org/10.3390/

fuels3020018

Academic Editor: Maria A. Goula

Received: 28 March 2022

Accepted: 25 April 2022

Published: 17 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Performance of Citric Acid as a Catalyst and Support Catalyst
When Synthesized with NaOH and CaO in Transesterification of
Biodiesel from Black Soldier Fly Larvae Fed on Kitchen Waste
Lilies K. Kathumbi 1,*, Patrick G. Home 2, James M. Raude 2 and Benson B. Gathitu 3

1 Institute for Basic Sciences, Technology and Innovation, Department of Civil Engineering,
Pan African University, Nairobi P.O. Box 62000-00200, Kenya

2 Department of Soil, Water and Environmental Engineering, Jomo Kenyatta University of Agriculture and
Technology, Nairobi P.O. Box 62000-00200, Kenya; pghome@jkuat.ac.ke (P.G.H.); ramesso@jkuat.ac.ke (J.M.R.)

3 Department of Agricultural and Biosystems Engineering, Jomo Kenyatta University of Agriculture and
Technology, Nairobi P.O. Box 62000-00200, Kenya; bbgathitu@jkuat.ac.ke

* Correspondence: lilieskath@gmail.com; Tel.: +254-722813031

Abstract: Current research and development to lower the production cost of biodiesel by utilizing
feedstock derived from waste motivates the quest for developing catalysts with high performance in
transesterification. This study investigates the performance of citric acid as a catalyst and support
catalyst in transesterification of oil from black soldier fly (Hermetia illucens) larvae fed on organic
kitchen waste. Two catalysts were prepared by synthesizing citric acid with NaOH and CaO by a
co-precipitation and an impregnation method, respectively. The design of the experiment adopted
response surface methodology for the optimization of biodiesel productivity by varying: the per-
centage loading weight of citric acid, the impregnation temperature, the calcinating temperature
and the calcinating time. The characteristic activity and reuse of the synthesized catalysts in trans-
esterification reactions were investigated. The morphology, chemical composition and structure of
the catalysts were characterized by scanning electron microscopy (SEM), Fourier transform infrared
(FTIR) spectroscopy, X-ray fluorescence (XRF) and X-ray diffraction (XRD). High citric acid loading
on NaOH and a small amount of citric acid on CaO resulted in improved dispersion and refinement
of the particle sizes. Increasing citric acid loading on NaOH improved the CaO and SiO2 composition
of the modified catalyst resulting in higher biodiesel yield compared to the modified CaO catalyst.
A maximum biodiesel yield of 93.08%, ±1.31, was obtained when NaOH was synthesized with a
130% weight of citric acid at 80 ◦C and calcinated at 600 ◦C for 240 min. Comparatively, a maximum
biodiesel yield of 90.35%, ±1.99, was obtained when CaO was synthesized with a 3% weight of citric
acid, impregnated at 140 ◦C and calcinated at 900 ◦C for 240 min. The two modified catalysts could
be recycled four times while maintaining a biodiesel yield of more than 70%.

Keywords: black soldier fly; biodiesel conversion; catalyst characterization; synthesis catalyst;
transesterification process; kitchen waste

1. Introduction

Biodiesel is a promising alternative for fossil fuels with added environmental ben-
efits. However, challenges to achieve sustainable and cost-effective production make
decarbonization of the transport sector difficult [1]. Current research is directed toward
realizing cost-effective feedstock and a production process with fewer production steps, a
shorter production period and low energy input. Use of waste resources such as: waste
cooking oil [2], municipal sludge [3], wastewater-based microalgae [4], food waste [5] and
organic waste bioconversion using Black Soldier Fly Larvae (BSFL) [6,7] is gaining research
attraction for third-generation biofuel production to mitigate food-versus-fuel competition.
Third-generation biofuels are produced from organic waste and products. Hence, they are
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linked to biological carbon fixation and carbon negative benefits to the environment [8].
Regardless of cost-competitive feedstock from non-edible oil sources, biodiesel production
is faced with difficulty mainly attributed to the high free fatty acids (FFA) percentage and
water content in the oil from waste resources that necessitates an intensive pre-treatment
process [9].

Technologies available for producing biodiesel have been reported by Aransiola
et al. [9] and Baskar and Aiswarya [10]. Among these technologies, catalytic transes-
terification is the most economic for industrial-level biodiesel production [11]. Catalysts
used in the transesterification of triglycerides are classified as homogenous acid or base,
heterogenous acid, base or solid catalysts, lipase/enzymes [12], transitional metals and
silicate catalysts [13]. The selection of the type of catalyst highly depends on the percentage
of FFA present in the oil. While homogenous catalysts are inexpensive and have high
reaction rates, their operation is inhibited by the high percentage of FFA content in oils
and the high water content in oil which leads to the formation of soap and difficulty in
separating it from the biodiesel, making product recovery tedious [14,15].

Heterogenous catalysts are becoming more attractive for transesterification due to their
ease of recovery, reusability, tolerance to moisture and high FFA content of the oil [15,16].
Overall, heterogenous catalysts have been reported to lower biodiesel production costs
by 4–20%, hence attracting current studies to develop catalysts with high stability and
anticipated chemical and physical properties [17]. Current research in transesterification
is being directed to the development of environmentally friendly heterogenous alkali- or
acid-based catalysts [18–22].

Synthesizing two or more compounds to produce a catalyst with increased catalyst
active sites, acidity and basicity is a common phenomenon that is used to develop heteroge-
nous catalysts with high reactivity, reusability and ease of separation [22,23]. The synthesis
method used in catalyst development plays a major role in enhancing the catalytic proper-
ties. Catalyst synthesis routes are still under development. Some of the efficient methods
that have been reported include impregnation methods [24], a hydrothermal method [25],
co-precipitation [26], sol-gel [27], complexation [28] and freeze/spray drying [29]. Among
these methods, coprecipitation and impregnation are becoming attractive as they require
lower temperatures and yield high-purity crystalline powders [26].

The synthesis method and the calcination temperatures have been reported as the
major parameters that influence textural properties, size, BrØnsted/Lewis acid sites and
strength of catalysts [23,30]. Researchers have reported different optimal calcination tem-
peratures for the synthesis of various catalysts: 400 ◦C for CaO/TiO2-ZrO2 [23], 600 ◦C
for MoO3/AL2O3 with citric acid (CA) [24], 500 ◦C for HZSM-5 with CA [22], 800 ◦C for
NaCl/oyster shell [18] and 600 ◦C for KF/CaO [31].

For economical biodiesel production, the development of catalysts at lower reaction
temperatures of less than 150 ◦C, low operation pressure and with a focus on solid acid
catalysts need further research [32]. CA is currently gaining popularity as a green catalyst
due to its role as a dealuminating, reducing and/or chelating agent when synthesized
with metal oxides and rare-earth metals such as zinc–aluminium mixed oxides, zeolites
HZSM-5, LaMnO3 and MoO3/AL2O3 [22,24,28,32,33]. CA is a tricarboxylic acid that bears
three carboxyl groups and a hydroxyl group that can be deprotonated, making it possible
to chemically react with metal hydroxides such as NaOH and Ca(OH)2 by an ionic bond
and weak covalence [34–36].

Synthesizing catalysts with citric acid has been reported to increase the surface dis-
persion of the catalyst, hence improving catalytic activity and yield in methanation as
well as hydrocarbon oxidation [24,37]. Calcinating limestone with CA at 700 ◦C results
in highly porous CaO with improved catalytic activity [38]. CA has been investigated as
a catalyst in methane production as well as in the food and pharmaceutical industries.
However, research on citric acid as a catalyst in biodiesel production still remains rare.
Vieira et al. [22] investigated the effect of modifying MHSZ-5 with CA by varying the CA
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concentration and treatment temperature on biodiesel yield and reported that the synthesis
increases the acidity strength and the external surface area of the catalyst.

A study by Macina et al. [39] reported the possibility of synthesizing CA with sodium
hydroxide through a hydrothermal synthesis process to form a carbon-dot catalyst with
a high biodiesel yield. Sodium citrate is insoluble in methanol, making it a feasible het-
erogenous catalyst for biodiesel production. A cost-efficient and environmentally friendly
method for the synthesis of sodium hydroxide with CA by coprecipitation to form an-
hydrous trisodium citric has also been reported by [40]. This method was invented for
application in food processing and in the pharmaceutical industries but has not been inves-
tigated for biodiesel production. Previous studies have reported the effects of synthesizing
a catalyst with CA, but it is unclear for the effects of the amount of CA on the modified
catalyst and the biodiesel yield.

In this study, a homogenous catalyst (NaOH) and an heterogenous catalyst (CaO)
are synthesized with citric acid by co-precipitation and impregnation, respectively, to
determine their performance in the transesterification of BSFL oil. The design of the
experiment adopted the response surface method (RSM) based on a four factor three-
level, central composite design (CCD) to optimize biodiesel yield by varying the synthesis
temperature, the CA% loading weight (CA wt.%), the calcination temperature and the time.
For comparison purposes, biodiesel was also produced by the CaO as well as by citric acid
alone before the synthesis.

2. Materials and Methods
2.1. Black Soldier Fly Larvae (BSFL) Rearing

BSFL were reared on kitchen waste at Jomo Kenyatta University of Agriculture and
Technology, Kenya. BSFL was chosen as the feedstock for biodiesel production in this
research due to its ability to convert biowaste into sustainable products and its ability to
survive in tropical regions. After hatching, larvae were fed on starter feed for 5 days and
thereafter fed on organic kitchen waste food for 28 days when they separated themselves
from the food waste. BSFL were harvested after 33 days, washed and rinsed in deionized
water. The clean BSFL were deactivated in an oven at 115 ◦C for 10 min, dried at 85 ◦C for
overnight and thereafter ground using a domestic kitchen blender [41]. The BSFL biomass
was then stored in a dry container ready for oil extraction.

2.2. Oil Extraction

A solvent extraction method was applied to extract lipids from the BSFL biomass
using the Bligh and Dyer method [42]. Specifically, n-hexane was used at a solvent to
biomass volume ratio of 3:1. The solvent was added to a volumetric flask with the BSFL
biomass, mixed using a shaker at 150 rpm for 20 min and left in situ overnight. The liquid
layer containing solvent and lipids was then collected by decantation and separated on a
separatory funnel overnight. Oil was recovered from the solvent using a rotary evaporator.
The extracted oil was washed using deionized water, dried in the oven at 100 ◦C and stored
at 4 ◦C.

2.3. Preparation of the Catalysts

CaO samples were synthesised with CA by an impregnation method following the
procedure reported by Kandaramath et al. [43]. Specifically, 2 g of CaO (AR grade, 98%)
was added to a solution of CA (weight %) and glycine in 50 mL of deionized water. This
was then mixed until a solution was attained and kept for 2 h under continuous stirring
at room temperature. The solution was then dried at 100 ◦C to form a solid. For NaOH,
synthesis with CA was performed by co-precipitation [40]. Specifically, 2 g of NaOH (AR
grade, 98%) were diluted in 10 mL of deionized water with 1 g of glycine as a surfactant
under stirring. CA was added, and the homogenous solution was heated to 40 ◦C, then
cooled to room temperature to allow precipitation. The solution was centrifuged at 75 rpm
to collect the precipitate, then dried at 130 ◦C. Thereafter, the synthesized catalysts were
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calcinated in a furnace at 500–900 ◦C for 4 h. The effects of the CA weight %, the synthesis
temperature, the calcination temperature and the period on the precursors were evaluated
on percentage biodiesel yield.

For each base catalyst, three samples corresponding to different CA weight % were ob-
tained. The samples were denoted as NaOH/3%CA, NaOH/66.5%CA and NaOH/130%CA,
for NaOH-modified catalysts, and CaO/3%CA, CaO/66.5%CA and CaO/130%CA, for
CaO-modified catalysts, respectively. CA and CaO as catalysts were also evaluated based
on biodiesel yield.

2.4. Characterization of the Catalysts

The functional groups of the modified catalysts were analysed at room temperature
on a Bruker Alpha Fourier FTIR spectrometer equipped with a deuterated triglycine sulfate
detector and a temperature-controlled diamond attenuated total reflectance (ATR) accessory.
All spectra were obtained at a range of 4000–400 cm−1 and a resolution of 4 cm−1. The
chemical composition of the samples was determined by XRF analysis using a Philips
PW4024 Spectrometer. The basicity of the solid surfaces was determined by a titration
method using benzene and benzoic acid with bromothymol blue as indicators [44]. The
morphology and average sizes of the prepared heterogenous catalysts were observed
and characterized by SEM (JEOL JCM 7000). The samples were glued to the stud and
examined at 20 µm and 1200× magnification. The structural and crystalline properties
were characterized by X-ray diffraction on a Rigaku Miniflex benchtop XRD using Cu Kα

radiation (40 kV, 40 Ma, λ = 1.5426 Å). Diffractograms were obtained from 20◦ to 80◦ at 2θ
at a step seize of 0.02. The average microcrystalline size (D) of the catalyst was calculated
using Scherrer’s Equation (1) [45].

D = K
λ

β cosθ
(1)

where D = crystalline size (nm), K = constant in respect to crystalline shape factor (0.89),
λ = X-ray beam wavelength (λ = 0.1542 nm), β = full width at half-maximum intensity and
θ = Bragg diffraction angle.

2.5. Experimental Design and Statistical Analysis

The effect of the CA wt.%, the synthesis temperature, the calcination temperature
and the time on biodiesel yield was evaluated. RSM was adopted to provide insights on
catalyst preparation factors for optimal biodiesel yield [45]. The model was adopted due to
its ability to provide insightful data on testing, goodness of fit and graphical presentation
of variables against the biodiesel yield. The response which is the biodiesel yield (%) was
calculated using Equation (2).

Biodiesel yield(%) =
biodiesel produced (g)
amount o f oil used (g)

× 100 (2)

Design expert 11 was used for regression analysis and analysis of variance (ANOVA).
The functional Equation (3) was applied to determine coefficients and correlation of cen-
tral composite design (CCD) dependent and independent variables. Experiments were
performed to confirm the predicted yield.

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β11X1
2 + β22X2

2 + β33X3
2 + β44X4

2

+β12X1X2 + β13X1X3 + β14X1X4 + β23X2X3 + β24X2X4
+β34X3X4

(3)

where Y = predicted biodiesel yield (%); X1 = CA loading (CA wt.%); X2 = synthesis
temperature; X3 = calcination temperature; X4 = calcination time, β0 = regression coefficient
for the intercept, β1 − β4 are linear parameters, β12, β13, β14, β23, β24 and β34 = interaction
parameters and β11, β22, β33 and β44 are quadratic parameters.
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2.6. Transesterification Reaction

Transesterification is the reaction between triglycerides and alcohol in the presence of
catalysts to form methyl/ethyl esters and glycerol as a by-product [46–48]. In this study, a
two-step esterification of BSFL oil in 1% H2SO4 in methanol followed by transesterification
using the synthesized catalysts in methanol was adopted. For the transesterification
reaction, 4 g of oil, 2.5 wt.% of catalyst, and an oil–methanol ratio of 1:8 was reacted in
a 250 mL conical flask on a temperature-controlled hot plate equipped with a magnetic
stirrer. The mixture was heated at 75 ◦C with stirring for 40 min. After cooling, a centrifuge
was used to aid the separation of methanol, methyl esters, glycerol and the catalyst. A
separating funnel was used to collect the upper layer containing biodiesel and methanol. A
rotary evaporator was then used to recover methanol from the biodiesel. The biodiesel was
then washed with warm deionized water, dried and weighed to determine the percentage
yield. An equation of the transesterification reaction is presented in Figure 1 [49].
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Figure 1. Transesterification reaction, where R1, R2, and R3 are long hydrocarbon bonds.

The reaction is reversible, hence the need for excess alcohol to shift the equilibrium
toward the formation of ethyl/methyl esters [50].

2.7. Biodiesel Characterization

The biodiesel functional groups were characterized by a Bruker Alpha FTIR spectrom-
eter as reported in Section 2.4. The fatty acid methyl esters (FAME) of oil and obtained
biodiesel were determined by gas chromatography–mass spectroscopy (GC-MS) using an
Agilent 5977B series of GC/MS equipped with a SupelcoSP-2560:1531.48227 column of
100 m × 250 m × 0.2 µm dimensions. The oil and biodiesel samples were analyzed at
varied temperatures starting from 140 ◦C to 240 ◦C following the method described by
Lawan et al. [51]. The fuel properties of the produced biodiesel, namely, density at 15 ◦C,
kinematic viscosity at 40 ◦C and calorific value were determined as per ASTM standards
and comparison with the EN14214-established specifications [52].

2.8. Catalysts Recyclability

After the transesterification reaction, the catalysts were separated from the products
by centrifugation, washed in acetone and then dried at 200 ◦C for 120 min. The regener-
ated catalysts were then re-used in successive transesterification at similar experimental
parameters to determine their biodiesel yield and stability in subsequent recycles.

3. Results and Discussion
3.1. Characterization of CaO/CA and NaOH/CA Catalysts

The results of the chemical composition analysis of the synthesized catalysts as de-
termined by XRF are listed on Table 1. The modified catalysts were mainly composed of
CaO, MgO, Al2O3, Fe, SiO2, Ti, Mn and P2O5 with minor traces of Zn, Sr, Cr and Zr. The
presence of the additional metal elements may be due to the purity of the CaO and NaOH
used in this experiment. Citate ions have been reported to form strong ionic complexes
with metal ions such as Fe3+, Mg2+, Ag+, Ca2+ and Zn2+ which influence the formation and
growth of nanoparticles [53,54].
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Table 1. Chemical composition of NaOH/130%CA and CaO/66.5%CA catalysts.

Catalyst Element Composition (%) SiO/AL Basicity
(mmol/g)

MgO Al2O3 SiO2 P2O5 CaO Mn Fe Ti

NaOH/3%CA-600 ◦C 72.59 0.17 22.24 0.00 1.32 0.15 1.59 1.33 127.79 1.70
NaOH/66.5%CA-600 ◦C 71.02 0.17 22.52 0.27 2.30 0.32 2.48 0.76 130.95 2.45
NaOH/130%CA-600 ◦C 71.96 0.17 22.99 0.12 2.65 0.31 1.21 0.90 133.67 3.61
NaOH/130%CA-300 ◦C 72.03 0.15 21.38 0.00 2.47 0.29 1.31 1.36 143.46 -
NaOH/130%CA-900 ◦C 70.68 0.17 23.80 0.00 3.25 0.22 1.15 0.90 144.23 5.33

CaO/3%CA-900 ◦C 0.20 0.93 0.05 0.80 96.39 0.01 0.18 1.00 0.06 -
CaO/66.5%CA-900 ◦C 0.11 0.63 0.45 0.81 96.19 0.01 0.00 0.00 0.71 8.70
CaO/130%CA-900 ◦C 3.41 0.55 0.50 0.97 93.36 0.01 0.18 0.02 0.91 2.65
CaO/66.5%CA-300 ◦C 3.77 1.83 0.21 0.81 91.40 0.25 0.00 0.00 0.12 0.25
CaO/66.5%CA-600 ◦C 1.05 1.01 1.02 0.20 96.21 0.00 0.16 0.00 1.01 7.08

CaO 0.00 1.52 0.03 0.26 97.51 0.02 0.17 0.03 0.02 -
CA 86.99 0.00 4.90 0.02 3.91 0.00 2.85 0.15 0.00 -

Increasing the CA wt.% on NaOH resulted in an increased composition of both CaO
and SiO2. On the other hand, increasing the calcination temperatures from 300 to 900 ◦C
resulted in an increase in CaO and SiO2 composition and a decrease in the composition of
MgO, Fe and Ti of the modified NaOH/CA catalyst. When NaOH/130%CA was calcined at
600 ◦C, it resulted in a maximum biodiesel yield, suggesting that increasing CaO, SiO2 and
MgO composition resulted in increased catalytic activity. These results are in agreement
with previous research, where it was reported that incorporating MgO, SrO and CaO on
the surface of a catalyst improved the activity of the catalyst in transesterification [55]. For
NaOH modified catalysts, high CA wt.% loading and moderate calcination temperatures
of 600 ◦C were the preferred conditions for the catalyst synthesis.

Strangely, increasing CA wt.% loading on CaO resulted in a low percentage compo-
sition of CaO, while that of MgO was slightly increased. Moreover, the composition of
Al2O3 was observed to decrease with an increase in both CA wt. % loading and calcination
temperature, suggesting that CA played a role as a dealuminating agent for CaO/CA
catalysts. Low calcination temperatures of 300 ◦C for CaO/CA catalysts resulted in a low
biodiesel yield. Moreover, the catalyst showed a low composition of CaO, suggesting that
CaO composition played a major role in the activity of the synthesized catalyst. The low
catalytic activity of CaO/CA catalysts calcined at 300 ◦C can be attributed to the fact that
Ca(OH)2 decomposes to CaO at temperatures above 600◦C [56].

For all the synthesized catalysts, the Si/Al ratio was seen to increase with both an
increase in CA wt.% and calcination temperatures, depicting that the synthesis led to
dealumination which is linked to a reduction in BrØnsted and Lewis acid site as reported
by Vieira et al. [22]. The hydroxyl (Si-(OH)-Al) group has been reported to influence the
BrØnsted and Lewis acid site of a catalyst [22,57]. The basicity of all the synthesized
catalysts was seen to increase with an increase in calcination temperatures which is in
agreement with previous researchers [44,58]. Synthesizing the catalysts with CA decreased
the BrØnsted and Lewis acid site, while the basicity was improved which resulted in
increased biodiesel productivity.

The FTIR spectra of the functional groups of the modified catalyst is presented in
Figure 2. The spectra of CaO and CaO/CA display an O-H bond at 3468 cm−1 of the
Ca(OH)2 phase, indicating the presence of water molecules on the surface of the catalysts
(Figure 2a). The peak corresponding to Ca-O (1590.12 cm−1) was more intense in CaO
compared to the synthesized catalysts. This explains the higher composition of CaO in
the synthesized catalysts from the XRF results as well as the weaker basic properties
of CaO/CA catalysts which may be linked to the lower catalytic activity compared to
commercial CaO [56]. The absorbance peaks at 1400.07 cm−1 correspond to antisymmetric
stretching vibrations C=O due to the presence of carbonate minerals [59,60].



Fuels 2022, 3 301

Fuels 2021, 2, FOR PEER REVIEW 7 
 

 

lysts was seen to increase with an increase in calcination temperatures which is in agree-

ment with previous researchers [44,58]. Synthesizing the catalysts with CA decreased the 

BrØ nsted and Lewis acid site, while the basicity was improved which resulted in in-

creased biodiesel productivity. 

The FTIR spectra of the functional groups of the modified catalyst is presented in 

Figure 2. The spectra of CaO and CaO/CA display an O-H bond at 3468 cm−1 of the 

Ca(OH)2 phase, indicating the presence of water molecules on the surface of the catalysts 

(Figure 2a). The peak corresponding to Ca-O (1590.12 cm−1) was more intense in CaO com-

pared to the synthesized catalysts. This explains the higher composition of CaO in the 

synthesized catalysts from the XRF results as well as the weaker basic properties of 

CaO/CA catalysts which may be linked to the lower catalytic activity compared to com-

mercial CaO [56]. The absorbance peaks at 1400.07 cm−1 correspond to antisymmetric 

stretching vibrations C=O due to the presence of carbonate minerals [59,60]. 

  

(a) (b) 

Figure 2. FTIR spectra of different CA loading wt.% on base catalyst: (a) CaO/CA; (b) NaOH/CA. 

Stretching vibrations corresponding to -C-O appear in the region between 1100 cm−1 

and 900 cm−1 indicating that CA was chemically bonded to the surface of CaO [56]. All 

spectra show strong absorption at 723 cm−1 and 454 cm−1 which is attributed to the Ca-O 

bond and the bending mode of CaCO3 vibrations [61]. The peaks intensity of CaO and 

those of the synthesized catalysts did not change, suggesting that the synthesis connected 

the CaO surface chemically without modifying the functional group of CaO. 

From NaOH/CA spectra (Figure 2b), broad bands are observed between 3438.3 

and3323.14 cm−1 which correspond to the stretching vibrations linked with the -OH group. 

The synthesis resulted in the formation of a covalent bond at 2352.59 cm−1 which corre-

sponds to -COO- stretching. This suggests that Na+ were capped by citrate hydroxyl 

groups, therefore preventing any change on the surface of the NaOH/CA catalyst when 

dissolved in methanol [62]. At 1592.95 cm−1, 1390.4 cm−1, 1122.44 cm−1 and 1067.16 cm−1, the 

C-H bonds appear, indicating absorption of citric molecules into the Na surface [63]. A 

phase shift is observed at 1020.09 cm−1 in the NaOH/CA spectra (Figure 2b). Adsorption 

bands appear at 1029.09 cm−1, 1844 cm−1 and 699 cm−1 corresponding to S=O, Al-O and Mg-

O stretching vibrations, respectively, which is in agreement with the results of XRF [64]. 

The characteristics bands at 651.9 cm−1, 621.1 cm−1 and 479.47 cm−1 of the hexagonal phases 

of trisodium citrate were observed for all the catalysts. In all spectra (Figure 2a,b), the 

synthesis is seen to result in active vibrations at the fingerprints region showing vinyl 

compounds and aromatic bonds between 400 and700 cm−1 [65]. 

Figure 2. FTIR spectra of different CA loading wt.% on base catalyst: (a) CaO/CA; (b) NaOH/CA.

Stretching vibrations corresponding to -C-O appear in the region between 1100 cm−1

and 900 cm−1 indicating that CA was chemically bonded to the surface of CaO [56]. All
spectra show strong absorption at 723 cm−1 and 454 cm−1 which is attributed to the Ca-O
bond and the bending mode of CaCO3 vibrations [61]. The peaks intensity of CaO and
those of the synthesized catalysts did not change, suggesting that the synthesis connected
the CaO surface chemically without modifying the functional group of CaO.

From NaOH/CA spectra (Figure 2b), broad bands are observed between 3438.3 and
3323.14 cm−1 which correspond to the stretching vibrations linked with the -OH group. The
synthesis resulted in the formation of a covalent bond at 2352.59 cm−1 which corresponds
to -COO- stretching. This suggests that Na+ were capped by citrate hydroxyl groups,
therefore preventing any change on the surface of the NaOH/CA catalyst when dissolved
in methanol [62]. At 1592.95 cm−1, 1390.4 cm−1, 1122.44 cm−1 and 1067.16 cm−1, the C-H
bonds appear, indicating absorption of citric molecules into the Na surface [63]. A phase
shift is observed at 1020.09 cm−1 in the NaOH/CA spectra (Figure 2b). Adsorption bands
appear at 1029.09 cm−1, 1844 cm−1 and 699 cm−1 corresponding to S=O, Al-O and Mg-O
stretching vibrations, respectively, which is in agreement with the results of XRF [64]. The
characteristics bands at 651.9 cm−1, 621.1 cm−1 and 479.47 cm−1 of the hexagonal phases
of trisodium citrate were observed for all the catalysts. In all spectra (Figure 2a,b), the
synthesis is seen to result in active vibrations at the fingerprints region showing vinyl
compounds and aromatic bonds between 400 and700 cm−1 [65].

Surface Morphology and Crystalline Structure of Synthesized Catalysts

The scanning electron microscopy (SEM) micrographs of the synthesized catalysts are
presented in Figure 3. The micrographs of the CaO/CA catalysts showed smaller particle
size and more rounded edges compared to those of the parent CaO (Figure 3a). The particles
of CAO/3%CA showed well-defined shape with greater particle dispersion compared to
CaO/66%CA and CaO/130%CA. The micrographs of CaO/66%CA and CaO/130%CA
showed amorphous-like particles with rounded shapes, and their edges were not well
defined. The best transesterification activity was attained with CaO/3%CA indicating that
a low percentage of CA resulted in greater dispersion of CaO species and a more refined
particle size of the modified catalyst.
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Figure 3. SEM micrographs of the catalysts with varied wt.% loading of citric acid: (a) CaO/CA
catalysts; (b) NaOH/CA catalysts.

On the other hand, NaOH/3%CA micrographs display rough edges. However, as
the concentration of citric acid was increased to 66.5 wt.%, the modified catalyst displayed
fine and smoother edges (Figure 3b). When CA wt.% was further increased to 130%,
the particles displayed well-formed shapes, indicating successful crystal growth during
the precipitation stage. NaOH/130%CA is seen to have well-formed particle distribution
indicating that high CA loading on NaOH resulted in improved dispersion of NaOH species
which explains the increased catalytic activity. A study by Meng et al. [24] also reported
that the addition of citric acid increased the dispersion of Mo species, thus improving
catalytic activity of MoO3/Al2O3 in methanation.

Synthesizing the catalysts with CA resulted in a reduced apparent particle size of the
catalysts (Table 2) and refined particle dispersion. The contradicting effects of CA wt.% on
NaOH/CA and CaO/CA catalyst particle dispersion and refinement may be attributed to
the preparation method. High CA wt.% was effective for the precipitation of NaOH/CA
crystals, while CA weakly attached to the CaO surface in the impregnation process. The
results show that CA is more likely to bind to Na+ compared to Ca2+.
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Table 2. XRD Structural properties and catalytic activity of synthesized catalysts.

Catalyst Crystallite Size (nm) Crystallinity (%) Relative Cross Section
Size (µm) * Biodiesel Yield (%)

NaOH/130%CA-300 ◦C 86.35 52.65 1.94 66.5
NaOH/130%CA-600 ◦C 56.98 69.00 1.46 93
NaOH/130%CA-900 ◦C 54.73 63.53 1.44 88.5
CaO/66.5%CA-300 ◦C 56.80 5.76 1.78 52.5
CaO/66.5%CA-600 ◦C 49.71 64.70 1.35 90.5
CaO/66.5%CA-900 ◦C 56.80 67.09 1.41 91.5

CaO 70.58 64.92 1.6 92.05

* Measurements from SEM at 20 µm.

The XRD diffractograms of the synthesized CaO catalysts are depicted in Figure 4. The
spectra patterns of the CaO/CA catalysts displayed sharp peaks that correspond to CaO
at 2θ values of 29.75◦, 32.74◦, 37.86◦, 54.82◦, 64.74◦ and 68.02◦. These patterns are similar
to those of the modified CaO nanocatalyst [31,66]. At lower calcination temperatures of
300 ◦C, the diffractogram of the modified catalyst was highly amorphous which accounts
for the low crystallinity and low biodiesel yield from the catalyst (Table 2). At higher
calcination temperatures of 600 ◦C, the peaks intensity of CaO phases increased and
were comparable to those of commercial CaO. This is in agreement with the XRF results,
where the composition of the CaO was seen to increase with the increase in calcination
temperature. The percentage crystallinity of the CaO/CA catalysts calcined at 600 ◦C and
900 ◦C was 64.70% and 76.09%, respectively. These results are comparable to those of
commercial CaO with 64.93%. The calculated crystalline size of the CaO was 70.58 nm
which was greater than that of the synthesized catalysts (Table 2). This is in agreement
with the SEM micrographs as well as the relative size estimation. The results compare to
a previous study by Wong et al. [58] where the crystallite size of CaO was reported to be
66.5 nm when calcined at 700 ◦C.
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The XRD patterns of NaOH/CA catalysts showed several diffraction peaks indicating
the presence of Na2O, NaOH·H2O, NaAlSiO4, SiO2 and MgO in hydrated and anhydrous
form Figure 5.
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The peaks corresponding to the Na2O phase were seen to intensify with an increase
in calcination temperature which was inconsistent with the decrease in crystallite sizes
and the increase in biodiesel yield as shown in Table 2. Moreover, an increase in calcina-
tion temperatures resulted in an increase in SiO2 peak intensity which is in agreement
with previously discussed XRF results. These results suggest that the NaOH successively
reacted with the CA resulting in the formation of nitrites with aluminates and silicates.
This is in accordance with previous studies on trisodium citrate and NaOH/alumina
catalysts [67,68].

3.2. Central Composite Design (CCD) Analysis for Biodiesel Yield

A summary of the three block, (set1, set2 and set3), four factor, three level, full factorial
CCD matrix is presented in Table 3. The design provided 30 experimental runs for each
synthesized catalyst.

The data were analysed using ANOVA and showed that the RSM model used in
this study was statistically significant (p = 0.0022, r = 0.9235, R2 = 0.8529 for CaO/CA
and p = 0.0027, r = 0.9606, R2 = 0.8476 for NaOH/CA catalyst) in representing the
relationship between the independent and dependent variables of the quadratic Equation
(3). The coded equation showed positive coefficients of X3 and X4 for the CaO catalyst
(Equation (4)) and X1, X3 and X4 for the NaOH/CA catalysts (Equation (5)), indicating
that their variation had an effect on the response (biodiesel yield). For the CaO/CA
catalysts, the CA wt.% and the calcination temperature were the two variables that
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showed significant (p < 0.05) influence on biodiesel yield. While for the NaOH/CA
catalyst, the CA wt.%, calcination temperature and the synthesis temperature influenced
the catalyst’s activity in transesterification. The lack of fit F-values of 1.42 and 5.01
for CaO/CA and NaOH/CA, respectively, were not significant, indicating the model’s
goodness of fit. The prediction model of the biodiesel yield using the modified catalyst
positively correlated with the actual experiment is shown by the plots in Figure 6. This
shows that the determined coefficients of regression presented by Equations (4) and (5)
provided relevant descriptions of the experimental data.

Y = +78.92 − 5.88X1 − 0.28X2 + 18.69X3 + 4.22X4 − 0.14X1
2 − 4.16X2

2

−8.16X3
2 − 0.82X4

2 − 1.63X1X2 − 1.05 + 1.73X1X3 − 0.14X1X4 − 1.73X2X3
+0.9X2X4 − 0.49X3X4

(4)

Y = +83.84 + 9.73X1 − 4.07X2 + 5.55X3 + 5.94X4 + 1.97X1
2 − 9.57X2

2

−12.63X3
2 − 2.55X4

2 − 0.31X1X2 + 0.58X1X3 + 1.37X1 − 1.08X40.2X2X3
−1.82X2X4 − 2.73X3X4

(5)

Table 3. Central composite design matrix for BSFL biodiesel yield.

Std Block Run Independent Variables Biodiesel
Yield (%)

Biodiesel
Yield (%)

X1: X2: X3: X4:

CaO/CA NaOH/CACA Loading
(wt.%)

Synthesis
Temperature (◦C)

Calcination
Temperature (◦C)

Calcination
Time (Minutes)

14 Set 1 1 130 80 900 240 78.25 86.55
15 Set 1 2 3 200 900 240 88.55 50.2
2 Set 1 3 130 80 300 90 48.2 65.5
3 Set 1 4 3 200 300 90 68.15 48.55

12 Set 1 5 130 200 300 240 50 75.15
5 Set 1 6 3 80 900 90 88.55 60
9 Set 1 7 3 80 300 240 60 58.5

18 Set 1 8 66.5 140 600 165 78.25 80
8 Set 1 9 130 200 900 90 75.5 76.44

17 Set 1 10 66.5 140 600 165 60.25 80.75
1 Set 2 11 3 80 300 90 42.5 52.16
4 Set 2 12 130 200 300 90 38 70

10 Set 2 13 130 80 300 240 40.5 88.25
16 Set 2 14 130 200 900 240 90 74
6 Set 2 15 130 80 900 90 90.5 86.66

19 Set 2 16 66.5 140 600 165 90 80
7 Set 2 17 3 200 900 90 90 55.05

20 Set 2 18 66.5 140 600 165 75.25 89.5
13 Set 2 19 3 80 900 240 91.5 60
11 Set 2 20 3 200 300 240 58 50.55
25 Set 3 21 66.5 140 0 165 0 0
29 Set 3 22 66.5 140 600 165 91.5 92.24
22 Set 3 23 193.5 140 600 165 56.15 93.15
21 Set 3 24 -60.5 140 600 165 88.5 70.15
23 Set 3 25 66.5 20 600 165 62.5 45.52
24 Set 3 26 66.5 260 600 165 50 25.5
26 Set 3 27 66.5 140 1200 165 80.5 46.5
27 Set 3 28 66.5 140 600 15 48.11 35.15
30 Set 3 29 66.5 140 600 165 78.25 80.55
28 Set 3 30 66.5 140 600 315 91.05 92
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For model results verification of optimum conditions by experiment, when NaOH
was precipitated with 100 wt.%CA at 80 ◦C and calcined at 600 ◦C for 4 h, it resulted in a
biodiesel yield of 93.08%, ±1.31, while the model predicted a yield of 95.12%. Likewise,
when CaO was impregnated with 40 wt.%CA at 140 ◦C and calcined at 800 ◦C for 3 h, it
yielded 90.35.%, ±1.99, biodiesel, while the prediction was 91.18%. This showed that there
was a good correlation between the experimental and predicted biodiesel yield results. The
results showed the ability of synthesizing NaOH and CaO with citric acid to form modified
catalysts with high activity in transesterification.

3.3. Assessment of Catalytic Performance in Transesterification of BSFL Oil
3.3.1. Effects of Citric Acid Loading wt.% on CaO and NaOH on Biodiesel Yield

In the absence of a catalyst, the transesterification of BFSL oil into biodiesel did not
occur, indicating that for the reaction to shift forward to form FAME, a catalyst must
be present. Figure 7 shows the effect of the CA loading weight on transesterification
performance of the synthesized catalysts.
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Synthesizing CaO with citric acid attained a maximum biodiesel yield of 94.25%, ±1.6,
as illustrated in Figure 7a. At a lower CA loading of 3–50 wt.%, the modified catalyst
resulted in a biodiesel yield above 90%. However, at a higher CA loading of more than
50 wt.%, biodiesel yield decreased gradually. As previously seen from the SEM images,
high wt.% of CA on CaO inhibits the dispersion of particles; therefore, it has the tendency
to decrease the activity of the catalysts. On the other hand, biodiesel yield increased with
CA wt.% on NaOH attaining a maximum yield of 94%, ±3.5, at 130 wt.% (Figure 7b). In
their experiments, Macina et al. [39] used high wt.% loading of citric acid on NaOH in
preparation for a carbon-dot catalyst with CA and NaOH. However, the effects of citric
acid on the modified catalyst were not discussed in the study. NaOH requires a high
concentration of citric acid for effective crystallization during the precipitation step. A
high wt.% of CA on NaOH was also observed to increase the particle dispersion from SEM
images, thus increasing the activity of the catalyst.

3.3.2. Effects of Synthesis Temperatures on Biodiesel Yield

The synthesis temperature had great impact on NaOH/CA compared to CaO/CA
catalysts (Figure 8). NaOH/CA catalysts were more active when synthesized at lower
temperatures compared to CaO/CA (Figure 8a). The optimum synthesis temperatures
for the two catalysts were 100 ◦C and 140 ◦C, respectively. The reaction between NaOH
with CA for precipitation is exothermic, and maintaining the temperature at 80 ◦C resulted
in a higher crystal yield, indicating that for successful precipitation of sodium hydroxide
with citric acid, it is important to maintain the synthesis temperature at the range of
80–100 ◦C. Experiments have also reported the possibility of precipitation of NaOH with
CA at ambient temperatures [40]. The CaO/CA catalysts required a higher synthesis
temperature (140 ◦C) for impregnation to be completed (Figure 8b). However, very high
impregnation temperatures of above 170 ◦C resulted in decreased biodiesel yield which
could be attributed to the fact that the solution dried up very fast, hindering the complete
synthesis of the precursors with CA.
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3.3.3. Effect of Calcination Temperatures and Time on Biodiesel Yield

The catalytic activity of CaO/CA increased with an increase in calcination tempera-
tures, while that of NaOH/CA curtailed when calcination temperatures were raised beyond
650 ◦C. At low calcination temperatures below 600 ◦C, CaO/CA catalysts resulted in low
biodiesel yield. This was attributed to the low composition of CaO due to the presence of
Ca(OH)2 and CaCO3 at low calcination temperatures [58]. At high calcination temperatures,
CaO/CA resulted in increased biodiesel yield (Figure 9a) attaining a maximum yield of
90.5% when calcinated at 800 ◦C, indicating that high calcination temperatures within the
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range of 700–800 ◦C were the most favourable for the synthesis of CaO/CA catalysts. These
results are in agreement with results from a previous study by Wong et al. [58] who reported
that CaO/NB2O5 resulted in high biodiesel yield when calcined at 600 ◦C. The authors
observed that low calcination temperatures promoted the formation of CO2 and moisture
inhibiting the catalyst activity. On the other hand, very high calcination temperatures
caused crystals to sinter and agglomerate. Referring to the NaOH/CA catalyst, increasing
the calcination temperatures beyond 800 ◦C resulted in decreased catalytic activity as
demonstrated in Figure 9b. A maximum biodiesel yield of 93.15% was attained when the
catalyst was calcined at 600 ◦C for four hours.
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Figure 9. Effect of calcination temperatures and time on biodiesel yield: (a) CaO/CA; (b) NaOH/CA.

The calcination temperature and CA wt.% were the two main independent variables
that exhibited pronounced variation in biodiesel yield as shown by the three-dimensional
and contour diagrams presented in Figure 10. For the CaO/CA catalyst, low CA wt.%
(3–50 wt.%) and high calcination temperatures (above 700 ◦C) were the most favourable
conditions for high biodiesel yield (Figure 10a), while for the NaOH/CA, a high CA
wt.% (100–130 wt.%) and lower calcination temperatures (500–600 ◦C) resulted in high
biodiesel yield (Figure 10b). Therefore, the optimum conditions were 900 ◦C and 46 wt.%
for CaO/CA, and 600 ◦C and 130 wt.% for NaOH/CA, respectively.
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3.4. Composition and Fuel Properties of BSFL-Based Oil and Biodiesel

Results of the chemical composition of biodiesel derived from BSFL were determined
by GCMS as shown in Table 4 and Figure 11, respectively. The produced biodiesel was
mainly composed of lauric, palmitic, stearic and oleic acid with a high concentration of
saturated fatty acids (73.34–74.78%). The biodiesel composition profile of NaOH/CA and
CaO/CA was similar to that of the CaO catalyst, indicating the effectiveness of the synthesis
in transesterification.

Table 4. Fatty acids composition of BSFL biodiesel.

Fatty Acid The Numbers Denote the Number
of Carbons and Double Bonds

Relative Content (%)

NaOH/CA CaO/CA CaO

Nanoic acid C9:0 0.02% 0.03% 0.03%
Dodecane _ 0.08% 0.17% 0.12%
Caproic acid C10:0 0.66% 0.37% 0.66%
Lauric acid C12:0 36.00% 41.22% 41.29%
Myristic acid C14:0 11.92% 11.47% 12.33%
Pentadecanoic acid C15:0 0.08% 0.08% 0.09%
Palmitoleic acid C16:1 0.45% 0.12% 0.11%
Palmitic acid C16:0 21.28% 18.36% 16.12%
Heptadecanoic acid C17:0 0.14% 0.35% 0.44%
Oleic acid C18:1 25.70% 24.61% 24.00%
Stearic acid C18:0 3.12% 2.46% 3.66%
Linoleic acid C18:2 0.46% 0.63% 1.03%
Linolenic acid C18:3 0.05% 0.07% 0.08%
Nonadecanoic acid C19:0 0.04% 0.06% 0.04%
Saturated Fatty Acids (SFA) 73.26% 74.40% 74.66%
Monounsaturated Fatty Acids (MUFA) 26.15% 24.73% 24.11%
Polyunsaturated Fatty Acids (PUFA) 0.51% 0.70% 1.11%

The FAME profile was in agreement with previous studies where the biodiesel from
BSFL has been reported to have a high composition of saturated fatty acids, indicating the
potential to produce high quality biodiesel [69–71]. A high concentration of saturated fatty
acids results in high oxidative stability of produced biodiesel, while biodiesel with high
polysaturated fatty acids is prone to suffer oxidation [72]. Biodiesel from BSFL has high
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saturated fatty acids; hence, it may have higher oxidation stability in comparison to energy
crops such as rapeseed [69].

The FTIR spectra of oil and biodiesel derived from BSFL is presented in Figure 12.
Broad and strong O-H bonds were observed at 3480.06 cm−1, indicating the presence of
moisture in the oil and biodiesel [73]. Strong absorbance peaks were observed at 2926 cm−1

and 2855 cm−1 which correspond to a C-H antisymmetric stretching vibration of methyl
and methylene groups, indicating a high composition of saturated fatty acids in oil and
biodiesel from BSFL [74]. These results are in agreement with the previously discussed
GCMS results. The peak at 1741.76 cm−1, corresponding to C=O stretching vibrations of
the functional group of esters, is more intense in the spectra of oil and that of biodiesel
produced by CA compared to that of biodiesel produced by NaOH/CA, indicating the
presence of carboxylic acids [75].
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Figure 12. Comparison of FTIR spectra of BSFL-derived oil and biodiesel.

The most distinctive feature in the spectra of oil and biodiesel is seen between
1500 cm−1 and 1000 cm−1

. Peaks were observed at 1458.32 cm−1, 1438.48 cm−1 and
1197.88 cm−1 which correspond to CH2, CH3 and O-CH3 of the methyl ester groups
in the spectra of the biodiesel produced by NaOH/CA only [76]. Second, a scissoring
split of the -C-H group at 1458.32 and the asymmetric bend corresponding to methyl ester
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moiety in the spectra of Biodiesel produced using NaOH/CA confirm the presence of
methyl esters that are absent in the spectra of BSFL oil and biodiesel produced using CA
as the catalyst [7]. There was no noticeable difference between the spectra of BSFL oil and
that of biodiesel produced using CA catalysts (biodiesel-CA), indicating that complete
transesterification of the BSFL oil into biodiesel did not take place when CA was used as a
catalyst. This shows that CA could not be effectively used as a catalyst in transesterification
of BSFL oil under the same conditions as NaOH/CA, CAO/CA and CaO. Moreover, it was
difficult to recover CA for recycling after the transesterification process. These results show
the potential of BSFL in biodiesel production as well as the ability of the modified catalysts
in transesterification of oil into biodiesel.

The fuel properties of the biodiesel produced using NaOH/CA and CaO/CA catalysts
(Table 5) met the European biodiesel standards, EN14241, and are comparable to those
previously reported by Li et al. [69], proving the effectiveness of the modified catalysts in
transesterification of BSFL oil into biodiesel.

Table 5. Properties of BSFL biodiesel.

Properties EN14214 Biodiesel from BSFL

Density (kg/m3) 860–900 862.2–868.4
Kinematic viscosity at 40 ◦C (mm2/s) 2.5–6.0 4.2–5

Acid number (mg KOH/g) 0.5 0.31–0.44
Refractive index 40 ◦C _ 1.4535–1.4461
Calorific value (Mj/kg) _ 37.8–39.14

Polyunsaturated methyl esters <1% 0.51–1.11%

3.5. Performance of The Synthesized Catalysts in Successive Reuse Cycles

Both the CaO/CA and the NaOH/CA attained biodiesel yield above 70% (Figure 13)
in the first four cycles. The modified catalysts were easy to separate from the biodiesel
product for recycling, showing their effectiveness in biodiesel production. Difficulty to
separate and clean the catalysts was noticed in the fourth to fifth cycle, and biodiesel yield
was significantly reduced after the fifth cycle. The catalysts deactivation may be attributed
to thermal degradation causing the loss of an active site over repeated use due to sintering.
CaO demonstrated high reactivity in the first cycle; however, biodiesel yield dropped below
70% after the second cycle. This may be attributed to the leaching effect of CaO [77,78].
CaO/CA exhibited higher yields by 13.4%, 20%, 23.6% and 49.4% in the second, third,
fourth and fifth cycles, respectively, compared to CaO. This may be due to slow leaching of
the CaO/CA catalyst during subsequent transesterification reactions. From an earlier study,
it was reported that when CaO is synthesized with a metal oxide, the modified catalyst
exhibited insignificant leaching in biodiesel production [41].
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4. Conclusions

This research investigated the effect of synthesizing NaOH and CaO with CA on the
activity of the catalyst in transesterification of oil from BSFL fed on kitchen waste. On its
own, CA was a poor catalyst for transesterification of BSFL oil. Moreover, it was difficult to
recover and separate CA and the products of transesterification.

When NaOH was synthesized with citric acid at 130 wt.%, a synthesis temperature of
80 ◦C and a calcination temperature of 600 ◦C for 4 h, it formed a heterogenous catalyst with
high biodiesel yield of up to 93.25%. CA was covalently bonded with Na, forming a modi-
fied catalyst with improved composition of Mn, CaO and SiO2. Higher CA wt.% loading
on NaOH improved particle dispersion and crystallinity and resulted in smaller crystallite
size which improved the catalytic activity of the modified catalyst. Moreover, NaOH/CA
was easy to separate from biodiesel, making transesterification process less tedious.

On the other hand, CaO is a heterogenous catalyst with a high biodiesel yield of
92.05%. However, when recycled, the biodiesel yield greatly reduced after the second cycle.
Synthesizing CaO with citric acid at 3 wt.%CA, an impregnation temperature of 140 ◦C and
a calcination temperature of 900◦C for 4 h formed a modified catalyst with a biodiesel yield
of 90.5%. A low CA wt.% on CaO improved particle dispersion, while a high CA wt.%
resulted in reduced CaO composition and agglomeration of particles. A very high CA wt.%
on CaO showed reduced catalytic activity of the modified catalyst. The modified CaO/CA
catalyst displayed smaller crystallite size and was more stable in subsequent reuse cycles
than the parent CaO by more than 13%. Both CaO/CA and NaOH/CA could be recycled
up to four times while maintaining biodiesel yield above 70%.

This study contributes to the development of catalysts for biodiesel production from
waste-related resources. It demonstrates the possibility of synthesizing transesterification
catalysts with CA (an organic acid) for biodiesel production from BSFL. Future studies
should investigate whether synthesizing catalysts with citric acid can inhibit deactivation
and leaching of a heterogenous catalyst in subsequent reuse cycles.
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