Nuclear Magnetic Resonance (NMR) Outputs Generation for Clastic Rocks Using Multi Regression Analysis, Examples from Offshore Western Australia
Abstract
:1. Introduction
2. Materials and Methods
3. Multi Regression Analysis Results
4. Discussion and Conclusions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Coates, G.R.; Xiao, L.; Prammer, M.G. NMR Logging: Principles and Applications; Haliburton Energy Services: Houston, TX, USA, 1999; Volume 234. [Google Scholar]
- Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 1948, 73, 679. [Google Scholar] [CrossRef]
- Kleinberg, R.; Kenyon, W.; Mitra, P. Mechanism of NMR relaxation of fluids in rock. J. Magn. Reson. Ser. A 1994, 108, 206–214. [Google Scholar] [CrossRef]
- Freedman, R. Advances in NMR logging. J. Pet. Technol. 2006, 58, 60–66. [Google Scholar] [CrossRef]
- Dunn, K.-J.; Bergman, D.J.; LaTorraca, G.A. Nuclear Magnetic Resonance: Petrophysical and Logging Applications; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Kenyon, W. Petrophysical principles of applications of NMR logging. Log. Anal. 1997, 38. [Google Scholar]
- Prammer, M.G.; Drack, E.D.; Bouton, J.C.; Gardner, J.S. Measurements of Clay-Bound Water and Total Porosity by Magnetic Resonance Logging: SPE-36522. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 6–9 October 1996. [Google Scholar]
- Kleinberg, R.L. Utility of NMR T2 distributions, connection with capillary pressure, clay effect, and determination of the surface relaxivity parameter ρ2. Magn. Reson. Imaging 1996, 14, 761–767. [Google Scholar] [CrossRef]
- Timur, A. Producible porosity and permeability of sandstones investigated through nuclear magnetic resonance principles. Log. Anal. 1969, 3, 1–15. [Google Scholar]
- Kenyon, W.E.; Day, P.I.; Straley, C.; Willemsen, J.F. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones. SPE Form. Eval. 1988, 3, 622–636. [Google Scholar] [CrossRef]
- Prammer, M. NMR pore size distributions and permeability at the well site. In SPE Annual Technical Conference and Exhibition; OnePetro: New Orleans, LA, USA, 1994. [Google Scholar]
- Dunn, K.J.; LaTorraca, G.A.; Warner, J.L.; Bergman, D.J. On the calculation and interpretation of NMR relaxation time distributions. In SPE Annual Technical Conference and Exhibition; OnePetrol: New Orleans, LA, USA, 1994. [Google Scholar]
- Rezaee, R. Synthesizing Nuclear Magnetic Resonance (NMR) Outputs for Clastic Rocks Using Machine Learning Methods, Examples from North West Shelf and Perth Basin, Western Australia. Energies 2022, 15, 518. [Google Scholar] [CrossRef]
- Kenyon, W.E.; Day, P.I.; Straley, C.; Willemsen, J.F. NMR in partially saturated rocks: Laboratory insights on free fluid index and comparison with borehole logs. Log. Anal. 1995, 36, 40–56. [Google Scholar]
- Coates, G.R.; Galford, J.; Mardon, D.; Marschall, D. A new characterization of bulk-volume irreducible using magnetic resonance. Log. Anal. 1998, 39. [Google Scholar]
- Kleinberg, R.L. Nuclear Magnetic Resonance. In Experimental Methods in the Physical Sciences; Elsevier: Amsterdam, The Netherlands, 1999; pp. 337–385. [Google Scholar]
Basin | Formation | No of Data Points | Age | Depth (m) | Main Lithology |
---|---|---|---|---|---|
Browse | Bassett | 380 | Tertiary | 1390–1408 | Sandstone |
Browse | Grebe | 1571 | Tertiary | 1312–1385 | Sandstone |
Browse | Nome | 167 | Triassic | 3823–3848 | Sandstone |
Browse | Plover | 295 | Jurassic | 3776–3823 | Sandstone |
Browse | Vulcan | 1130 | Juras. to Cre. | 3942–4138 | Sandstone |
N. Carnarvon | Angel | 941 | Jurassic | 3400–3700 | Sandstone |
N. Carnarvon | Barrow Group | 287 | Cretacous | 1890–1936 | Sandstone |
N. Carnarvon | Brigadier | 762 | Triassic | 3037–3162 | Sandstone |
N. Carnarvon | Forestier | 406 | Cretacous | 2983–3147 | Claystone |
N. Carnarvon | Muderong | 145 | Cretacous | 2960–2982 | Shale |
N. Carnarvon | Mungaroo | 6868 | Triassic | 3045–3710 | Sandstone |
Perth | Cattamarra | 697 | Jurassic | 2940–3052 | Sandstone |
Perth | Dongara | 37 | Triassic | 1276–1281 | Sandstone |
Perth | High Cliff | 1008 | Permian | 1310–1476 | Sandstone |
Perth | IRCM | 498 | Permian | 1278–1475 | Sandstone |
Perth | Kockatea | 833 | Triassic | 1188–1427 | Shale |
Well Log Type | Applications |
---|---|
Gamma-ray (GR) | a measure of the natural radioactivity of the whole formation near the wellbore mostly to be used to calculate the volume of shale (Vsh). |
Bulk density (RHOB) | a measure of the bulk density of the formation near the wellbore that can be used to calculate total porosity. |
Neutron porosity (NPHI) | a measure of the bulk volume of hydrogen in the formation near the wellbore that provides total porosity. |
Sonic (DT) | a measure of the travel time of sound waves in the formation near the wellbore that can be used to calculate porosity. |
Photoelectric Factor (PEF) | a measure of photoelectric absorption that depends on the atomic number that can indicate lithology. |
Resistivity logs (MSFL, LLS, and LLD) | a measure of the very shallow (MSFL), shallow (LLS), and deep (LLD) resistivities surrounding the tool-including contributions from the mud and the formation around the wellbore. |
Equations | R2 |
---|---|
BP1 = −0.02629 + 0.0064RHOB + 0.0353NPHI + 0.00021DT − 0.000135PEF + 0.000004MSFL0 + 0.003167Vsh − 0.02648PHIDe | 0.34 |
BP2 = 0.0809 − 0.04334RHOB + 0.0382NPHI + 0.000475DT + 0.003513PEF + 0.000018LLS + 0.002914Vsh − 0.13883PHIDe | 0.46 |
BP3 = 0.3296 − 0.13588RHOB − 0.03444NPHI + 0.0003DT + 0.010233PEF + 0.00003LLS + 0.001917Vsh − 0.22825PHIDe | 0.24 |
BP4 = 0.27838 − 0.11193RHOB − 0.06877NPHI + 0.00023DT + 0.008134PEF − 0.000038MSFL − 0.003877Vsh − 0.14099PHIDe | 0.19 |
BP5 = 0.12283 − 0.05146RHOB − 0.06293NPHI + 0.000508DT + 0.001021PEF − 0.000040MSFL − 0.014323Vsh − 0.05593PHIDe | 0.28 |
BP6 = 0.06577 − 0.02436RHOB − 0.01841NPHI + 0.000189DT + 0.001628PEF − 0.000082MSFL − 0.018688Vsh + 0.07862PHIDe | 0.46 |
BP7 = −0.09329 + 0.0464RHOB + 0.14057NPHI − 0.00052DT − 0.000217PEF − 0.00008LLS − 0.02807Vsh + 0.2707PHIDe | 0.53 |
BP8 = −0.10033 + 0.04855RHOB + 0.11431NPHI − 0.000431DT − 0.00247PEF + 0.000051MSFL − 0.000072LLS − 0.016974Vsh + 0.2044PHIDe | 0.41 |
CBW = 0.0546 − 0.03695RHOB + 0.0735NPHI + 0.000686DT + 0.003378PEF + 0.000018LLS + 0.00608Vsh − 0.16531PHIDe | 0.45 |
BVI = 0.608 − 0.24781RHOB − 0.10321NPHI + 0.00052DT + 0.018366PEF − 0.00006MSFL + 0.00004LLS − 0.00196Vsh − 0.36923PHIDe | 0.21 |
FFI = −0.005 + 0.01915RHOB + 0.17356NPHI − 0.000255DT − 0.00004PEF − 0.000072MSFL − 0.000128LLS + 0.000026LLD − 0.07806Vsh + 0.4978PHIDe | 0.72 |
Swirr = −0.446 + 0.1997RHOB + 0.054NPHI + 0.00363DT + 0.0157PEF − 0.000166MSFL + 0.000547LLS − 0.000167LLD + 0.4621Vsh − 1.064PHIDe | 0.68 |
T2LM = −584.1 + 270.4RHOB + 396.6NPHI − 1.15DT − 14.43PEF + 0.1854MSFL − 0.3293LLS + 0.0729LLD − 111.75Vsh + 1020.4PHIDe | 0.48 |
LogkSDR = 17.087 − 6.496RHOB + 2.3NPHI − 0.01037DT + 0.1473PEF + 0.0003MSFL − 0.004737LLS + 0.001246LLD − 3.6307Vsh + 1.220PHIDe | 0.76 |
LogkCoates = 18.046 − 6.608RHOB + 1.734NPHI − 0.01196DT + 0.1093PEF − 0.001087MSFL − 0.003939LLS + 0.000988LLD − 3.9892Vsh + 1.193PHIDe | 0.75 |
Equations | R2 |
---|---|
BP1 = −0.02573 + 0.00617RHOB + 0.03409NPHI + 0.00021DT + 0.003236Vsh − 0.0264PHIDe | 0.34 |
BP2 = 0.08302 − 0.04386RHOB + 0.04394NPHI + 0.000475DT + 0.003567PEF + 0.00002LLS − 0.14572PHIDe | 0.46 |
BP3 = 0.33195 − 0.13671RHOB − 0.03013NPHI + 0.00029DT + 0.010242PEF + 0.000014LLS − 0.23291PHIDe | 0.24 |
BP4 = 0.27469 − 0.11082RHOB − 0.07688NPHI + 0.000231DT + 0.008091PEF − 0.000034MSFL − 0.13152PHIDe | 0.19 |
BP5 = 0.11091 − 0.04627RHOB − 0.06055NPHI + 0.000520DT − 0.000037MSFL − 0.013959Vsh − 0.05024PHIDe | 0.28 |
BP6 = 0.06874 − 0.02397RHOB + 0.000122DT + 0.001399PEF − 0.000056MSFL − 0.021843Vsh + 0.07788PHIDe | 0.46 |
BP7 = −0.08797 + 0.04412RHOB + 0.14170NPHI − 0.000523DT − 0.000035LLS − 0.02870Vsh + 0.26720PHIDe | 0.53 |
BP8 = −0.10246 + 0.04955RHOB + 0.11239NPHI − 0.000433DT − 0.00243PEF − 0.000041LLS − 0.0165Vsh + 0.20577PHIDe | 0.41 |
CBW = 0.0539 − 0.03664RHOB + 0.07289NPHI + 0.000685DT + 0.003393PEF + 0.000023LLS + 0.00624Vsh − 0.16483PHIDe | 0.45 |
BWI = 0.6095 − 0.24855RHOB − 0.10173NPHI + 0.000523DT + 0.018308PEF − 0.00244Vsh − 0.37009PHIDe | 0.21 |
FFI = −0.004 + 0.01877RHOB + 0.17355NPHI − 0.000255DT − 0.000103MSFL − 0.000073LLS − 0.0782Vsh + 0.4968PHIDe | 0.72 |
Swirr = 0.4566 + 0.1991RHOB + 0.003828DT + 0.01645PEF + 0.000195LLS + 0.47167Vsh − 1.0569PHIDe | 0.68 |
T2LM = −590.3 + 273.3RHOB + 392.1NPHI − 1.154DT − 14.41PEF − 0.1411LLS − 110.79Vsh + 1023.5PHIDe | 0.48 |
LogkSDR = 17.075 − 6.490RHOB + 2.294NPHI − 0.01038DT + 0.1475PEF − 0.004542LLS + 0.001190LLD − 3.6281Vsh + 1.227PHIDe | 0.76 |
LogkCoates = 18.09 − 6.629RHOB + 1.774NPHI − 0.01192DT + 0.1085PEF − 0.004654LLS + 0.001192LLD − 3.9988Vsh + 1.166PHIDe | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaee, R. Nuclear Magnetic Resonance (NMR) Outputs Generation for Clastic Rocks Using Multi Regression Analysis, Examples from Offshore Western Australia. Fuels 2022, 3, 316-325. https://doi.org/10.3390/fuels3020019
Rezaee R. Nuclear Magnetic Resonance (NMR) Outputs Generation for Clastic Rocks Using Multi Regression Analysis, Examples from Offshore Western Australia. Fuels. 2022; 3(2):316-325. https://doi.org/10.3390/fuels3020019
Chicago/Turabian StyleRezaee, Reza. 2022. "Nuclear Magnetic Resonance (NMR) Outputs Generation for Clastic Rocks Using Multi Regression Analysis, Examples from Offshore Western Australia" Fuels 3, no. 2: 316-325. https://doi.org/10.3390/fuels3020019
APA StyleRezaee, R. (2022). Nuclear Magnetic Resonance (NMR) Outputs Generation for Clastic Rocks Using Multi Regression Analysis, Examples from Offshore Western Australia. Fuels, 3(2), 316-325. https://doi.org/10.3390/fuels3020019