Review on Power Cycling Reliability of SiC Power Device
Abstract
:1. Introduction
2. SiC Power Device Package Design
2.1. SiC Device with Traditional Packaging Structures and Challenges
2.2. SiC Power Device with a Low-Thermal-Resistance Package Design
3. Power Cycling Test Technology and Failure Behavior for SiC Device
3.1. Power Cycling Test Method
3.2. SiC Device’s Failure Behavior under the Power Cycling Test
3.3. SiC Device Power Cycling Test’s Monitoring Method
3.4. Power Cycling Test Standards’ Discussion
4. SiC Device Power Cycling Test’s Statistics and Challenges
4.1. Research Status in SiC Device Power Cycling Tests
4.2. Power Cycling Test Statistics for SiC Device’s Interconnection Technology
4.3. Challenges in SiC Devices’ Design and Power Cycling Tests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Luo, F.; Kang, Y. A review of SiC power module packaging: Layout, material system and integration. CPSS Trans. Power Electron. Appl. 2017, 2, 170–186. [Google Scholar] [CrossRef]
- Ren, H.; Zou, G.; Jia, Q.; Deng, Z.; Du, C.; Wang, W.; Liu, L. Thermal stress reduction strategy for high-temperature power electronics with Ag sintering. Microelectron. Reliab. 2021, 127, 114379. [Google Scholar] [CrossRef]
- Castro, C.; Reiter, T.; Graovac, D.; Christmann, A. Application requirements for automotive power modules. In Proceedings of the SIA 4th International Conference and Exhibition, Paris, France, 6–7 April 2011. [Google Scholar]
- Ren, H.; Zou, G.; Zhao, Z.; Wan, M.; Zhang, H.; Jia, Q.; Liu, L. High-reliability wireless packaging for high-temperature SiC power device sintered by novel organic-free nanomaterial. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1953–1959. [Google Scholar] [CrossRef]
- Varley, J.B.; Shen, B.; Higashiwaki, M. Wide bandgap semiconductor materials and devices. J. Appl. Phys. 2022, 131, 230401. [Google Scholar] [CrossRef]
- PowerAmerica. PowerAmerica Strategic Roadmap for Next Generation Wide Bandgap Power Electronics; PowerAmerica: Raleigh, NC, USA, 2017. [Google Scholar]
- Liang, Z.; Ning, P.; Wang, F. Development of advanced all-SiC power modules. IEEE Trans. Power Electron. 2013, 29, 2289–2295. [Google Scholar] [CrossRef]
- Kovacevic-Badstuebner, I.; Race, S.; Ziemann, T.; Tiwari, S.; Grossner, U.; Mengotti, E.; Bianda, E.; Jormanainen, J. Power cycling reliability of SiC MOSFETs in discrete and module packages. In Proceedings of the International Reliability Physics Symposium, Dallas, TX, USA, 27–31 March 2022. [Google Scholar]
- Wang, L.; Wang, W.; Hueting, R.J.; Rietveld, G.; Ferreira, J. Review of topside interconnections for wide bandgap power semiconductor packaging. IEEE Trans. Power Electron. 2022, 38, 472–490. [Google Scholar] [CrossRef]
- Schmidt, R.; Scheuermann, U. Separating failure modes in power cycling tests. In Proceedings of the International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 6–8 March 2012. [Google Scholar]
- GopiReddy, L.R.; Tolbert, L.M.; Ozpineci, B. Power cycle testing of power switches: A literature survey. IEEE Trans. Power Electron. 2014, 30, 2465–2473. [Google Scholar]
- Yang, Y.; Dorn-Gomba, L.; Rodriguez, R.; Mak, C.; Emadi, A. Automotive power module packaging: Current status and future trends. IEEE Access 2020, 8, 160126–160144. [Google Scholar] [CrossRef]
- Durand, C.; Klingler, M.; Coutellier, D.; Naceur, H. Power cycling reliability of power module: A survey. IEEE Trans. Device Mater. Reliab. 2016, 16, 80–97. [Google Scholar] [CrossRef]
- Held, M.; Jacob, P.; Nicoletti, G.; Scacco, P.; Poech, M.-H. Fast power cycling test of IGBT modules in traction application. In Proceedings of the Second International Conference on Power Electronics and Drive Systems, Singapore, 26–29 May 1997. [Google Scholar]
- Berg, H.; Wolfgang, E. Advanced IGBT modules for railway traction applications: Reliability testing. Microelectron. Reliab. 1998, 38, 1319–1323. [Google Scholar] [CrossRef]
- DS/EN 60749-34-2010; Semiconductor Devices-Mechanical and Climatic Test Methods—Part 34: Power Cycling. ECPE: Nuremberg, Germany, 2010.
- Automotive Electronics Council Component Technical Committee. AEC-Q101 Failure Mechanism Based Stress Test Qualification for Discrete Semiconductors in Automative Applications; AEC: USA, 2021. [Google Scholar]
- AQG 324 Qualification of Power Modules for Use in Power Electronics Converter Units (PCUs) in Motor Vehicles; ECPE: Nuremberg, Germany, 2018.
- JESD22-A105C; Power and Temperature Cycling. JEDEC: Arlington, VA, USA, 2004.
- JESD22-A122A; Power Cycling, JEDEC Solid State Technology Association. JEDEC: Arlington, VA, USA, 2016.
- Chidambaram, V.; Hattel, J.; Hald, J. Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system. Mater. Des. 2010, 31, 4638–4645. [Google Scholar] [CrossRef]
- Herold, C.; Schaefer, M.; Sauerland, F.; Poller, T.; Lutz, J.; Schilling, O. Power cycling capability of Modules with SiC-Diodes. In Proceedings of the 8th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 25–27 February 2014. [Google Scholar]
- Herold, C.; Sun, J.; Seidel, P.; Tinschert, L.; Lutz, J. Power cycling methods for SiC MOSFETs. In Proceedings of the 29th International Symposium on Power Semiconductor Devices and IC’s, Sapporo, Japan, 28 May–1 June 2017. [Google Scholar]
- Yasui, K.; Hayakawa, S.; Nakamura, M.; Kawase, D.; Ishigaki, T.; Sasaki, K.; Tabata, T.; Morita, T.; Sagawa, M.; Matsushima, H. Improvement of power cycling reliability of 3.3 kV full-SiC power modules with sintered copper technology for Tjmax = 175 °C. In Proceedings of the 30th International Symposium on Power Semiconductor Devices and ICs, Chicago, IL, USA, 13–17 May 2018. [Google Scholar]
- Woo, D.R.M.; Yuan, H.H.; Li, J.A.J.; Bum, L.J.; Hengyun, Z. Miniaturized double side cooling packaging for high power 3 phase SiC inverter module with junction temperature over 220 °C. In Proceedings of the 66th Electronic Components and Technology, Las Vegas, NV, USA, 31 May–3 June 2016. [Google Scholar]
- Yin, L.; Kapusta, C.; Gowda, A.; Nagarkar, k. A wire-bondless packaging platform for silicon carbide power semiconductor devices. J. Electron. Packag. 2018, 140, 031009. [Google Scholar] [CrossRef]
- Yin, L.; Nagarkar, K.; Gowda, A.; Kapusta, C.; Tuominen, R.; Gillespie, P.; Sherman, D.; Johnson, T.; Hayashibe, S. POL-kw modules for high power applications. In Proceedings of the 67th Electronic Components and Technology Conference, Orlando, FL, USA, 30 May–2 June 2017. [Google Scholar]
- Zhang, H.; Ang, S.; Mantooth, H.; Krishnamurthy, S. A high temperature, double-sided cooling SiC power electronics module. In Proceedings of the Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013. [Google Scholar]
- Han, L.; Liang, L.; Wang, Y.; Tang, X.; Bai, S. Performance limits of high voltage press-pack SiC IGBT and SiC MOSFET devices. Power Electron. Devices Compon. 2022, 3, 100019. [Google Scholar] [CrossRef]
- Gonzalez, J.O.; Aliyu, A.M.; Alatise, O.; Castellazzi, A.; Ran, L.; Mawby, P. Development and characterisation of pressed packaging solutions for high-temperature high-reliability SiC power modules. Microelectron. Reliab. 2016, 64, 434–439. [Google Scholar] [CrossRef]
- Gonzalez, J.O.; Alatise, O.; Aliyu, A.M.; Rajaguru, P.; Castellazzi, A.; Ran, L.; Mawby, P.A.; Bailey, C. Evaluation of SiC Schottky diodes using pressure contacts. IEEE Trans. Ind. Electron. 2017, 64, 8213–8223. [Google Scholar] [CrossRef]
- Zhu, N.; Mantooth, H.A.; Xu, D.; Chen, M.; Glover, M. A solution to press-pack packaging of SiC MOSFETS. IEEE Trans. Ind. Electron. 2017, 64, 8224–8234. [Google Scholar] [CrossRef]
- Nakamura, H.; Nishizawa, T.; Nashida, N. All-SiC Module Packaging Technology. Fuji Electr. Rev. 2015, 61, 224–227. [Google Scholar]
- Mouawad, B.; Skuriat, R.; Li, J.; Johnson, M.; Marino, C. Development of a highly integrated 10 kV SiC MOSFET power module with a direct jet impingement cooling system. In Proceedings of the 30th International Symposium on Power Semiconductor Devices and ICs, Chicago, IL, USA, 13–17 May 2018. [Google Scholar]
- Chinthavali, M.; Wang, Z.J.; Campbell, S.; Wu, T.; Ozpineci, B. 50-kW 1 kV DC bus air-cooled inverter with 1.7 kV SiC MOSFETs and 3D-printed novel power module packaging structure for grid applications. In Proceedings of the Applied Power Electronics Conference and Exposition, San Antonio, TX, USA, 4–8 March 2018. [Google Scholar]
- Chen, C.; Chen, Y.; Li, Y.; Huang, Z.; Liu, T.; Kang, Y. An SiC-based half-bridge module with an improved hybrid packaging method for high power density applications. IEEE Trans. Ind. Electron. 2017, 64, 8980–8991. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Y.; Chen, L.; Tan, Y.; Chen, C.; Kang, Y.; Luo, F. A novel low inductive 3D SiC power module based on hybrid packaging and integration method. In Proceedings of the Energy Conversion Congress and Exposition, Cincinnati, OH, USA, 1–5 October 2017. [Google Scholar]
- Ishiko, M.; Kondo, T. A simple approach for dynamic junction temperature estimation of IGBTs on PWM operating conditions. In Proceedings of the Power Electronics Specialists, Orlando, FL, USA, 17–21 June 2007. [Google Scholar]
- Czerny, B.; Lederer, M.; Nagl, B.; Trnka, A.; Khatibi, G.; Thoben, M. Thermo-mechanical analysis of bonding wires in IGBT modules under operating conditions. Microelectron. Reliab. 2012, 52, 2353–2357. [Google Scholar] [CrossRef]
- Scheuermann, U.; Schuler, S. Power cycling results for different control strategies. Microelectron. Reliab. 2010, 50, 1203–1209. [Google Scholar] [CrossRef]
- Bassler, M.; Pensl, G.; Afanas, V. “Carbon cluster model” for electronic states at SiCSiO2 interfaces. Diam. Relat. Mater. 1997, 6, 1472–1475. [Google Scholar] [CrossRef]
- Santini, T.; Sebastien, M.; Florent, M.; Phung, L.-V.; Allard, B. Gate oxide reliability assessment of a SiC MOSFET for high temperature aeronautic applications. In Proceedings of the ECCE Asia Downunder, Melbourne, VIC, Australia, 3–6 June 2013. [Google Scholar]
- Karki, U.; Peng, F. Effect of gate-oxide degradation on electrical parameters of power MOSFETs. IEEE Trans. Power Electron. 2018, 33, 10764–10773. [Google Scholar] [CrossRef]
- Manikam, V.R.; Cheong, K. Die attach materials for high temperature applications: A review. IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 457–478. [Google Scholar] [CrossRef]
- Dai, X.; Yang, X.; Wu, X.; Tu, C.; Liu, G. Analytical modeling of thermo-mechanical stress for bond wire of IGBT module. Microelectron. Reliab. 2021, 127, 114401. [Google Scholar] [CrossRef]
- Deng, Z.; Zou, G.; Jia, Q.; Feng, B.; Zhang, H.; Ren, H.; Liu, L. Effect of Ag sintered bondline thickness on high-temperature reliability of SiC power devices. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 1889–1895. [Google Scholar] [CrossRef]
- Smet, V.; Forest, F.; Huselstein, J.-J.; Richardeau, F.; Khatir, Z.; Lefebvre, S.; Berkani, M. Ageing and failure modes of IGBT modules in high-temperature power cycling. IEEE Trans. Ind. Electron. 2011, 58, 4931–4941. [Google Scholar] [CrossRef]
- Baker, N.; Luo, H.; Iannuzzo, F. Simultaneous on-state voltage and bond-wire resistance monitoring of silicon carbide MOSFETs. Energies 2017, 10, 384. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, P. A novel bond wire fault detection method for IGBT modules based on turn-on gate voltage overshoot. IEEE Trans. Ind. Electron. 2020, 36, 7501–7512. [Google Scholar] [CrossRef]
- Jing, L.; Du, M.; Wei, K.; Hurley, W. A health monitoring method for bond wires in IGBT modules based on voltage ringing characteristics. IEEE Trans. Electron Devices 2019, 66, 3953–3960. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, K.; Ji, B.; Qi, L.; Cui, X.; Zhang, X.; Du, L. In situ diagnosis of multichip IGBT module wire bonding faults based on collector voltage undershoot. IEEE Trans. Ind. Electron. 2022, 70, 3045–3054. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, M.; Meng, N.; Guo, W.; Yang, S.; Zhang, X. A non-contact sic power mosfets health status monitoring method based on magnetic field detection technology. In Proceedings of the Industrial Electronics and Applications, Kristiansand, Norway, 21–25 June 2020. [Google Scholar]
- Chu, C.; Dong, C.; Hu, J.; Du, M.; Ouyang, Z. Aging monitoring method of bond wires-based on phase-frequency characteristics of differential mode conducted interference signal for IGBT module. IEEE Trans. Device Mater. Reliab. 2021, 21, 639–646. [Google Scholar] [CrossRef]
- Wang, C.; He, Y.; Wang, C.; Li, L.; Li, J.; Wu, X. Multi-chip parallel IGBT power module failure monitoring based on gate dynamic characteristics. In Proceedings of the 5th Asia Conference on Power and Electrical Engineering, Chengdu, China, 4–7 June 2020. [Google Scholar]
- Wang, K.; Zhou, L.; Sun, P.; Du, X. Monitoring bond wires fatigue of multichip IGBT module using time duration of the gate charge. IEEE Trans. Power Electron. 2020, 36, 888–897. [Google Scholar] [CrossRef]
- Hoffmann, F.; Soler, V.; Mihaila, A.; Kaminski, N. Power Cycling Test on 3.3 kV SiC MOSFETs and the Effects of Bipolar Degradation on the Temperature Estimation by VSD-Method. In Proceedings of the 31st International Symposium on Power Semiconductor Devices and ICs, Shanghai, China, 19–23 May 2019. [Google Scholar]
- Stella, F.; Pellegrino, G.; Armando, E.; Daprà, D. Online junction temperature estimation of SiC power MOSFETs through on-state voltage mapping. IEEE Trans. Ind. Appl. 2018, 54, 3453–3462. [Google Scholar] [CrossRef]
- Griffo, A.; Wang, J.; Colombage, K.; Kamel, T. Real-time measurement of temperature sensitive electrical parameters in SiC power MOSFETs. IEEE Trans. Ind. Electron. 2017, 65, 2663–2671. [Google Scholar] [CrossRef]
- Kestler, T.; Bakran, M.-M. A “plug and measure” device for junction temperature monitoring in real converter environment. In Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 7–9 May 2019. [Google Scholar]
- Stella, F.; Pellegrino, G.; Armando, E. Coordinated on-line junction temperature estimation and prognostic of SiC power modules. In Proceedings of the Energy Conversion Congress and Exposition, Portland, OR, USA, 23–27 September 2018. [Google Scholar]
- Yang, H.C.; Simanjorang, R.; See, K.Y. A method for junction temperature estimation utilizing turn-on saturation current for SiC MOSFET. In Proceedings of the International Power Electronics, Niigata, Japan, 20–24 May 2018. [Google Scholar]
- Niu, H.; Lorenz, R. Real-time junction temperature sensing for silicon carbide MOSFET with different gate drive topologies and different operating conditions. IEEE Trans. Power Electron. 2017, 33, 3424–3440. [Google Scholar] [CrossRef]
- Yang, F.; Pu, S.; Xu, C.; Akin, B. Turn-on delay based real-time junction temperature measurement for SiC MOSFETs with aging compensation. IEEE Trans. Power Electron. 2020, 36, 1280–1294. [Google Scholar] [CrossRef]
- Zhang, Z.; Dyer, J.; Wu, X.; Wang, F.; Costinett, D.; Tolbert, L.M.; Blalock, B. Online junction temperature monitoring using intelligent gate drive for SiC power devices. IEEE Trans. Power Electron. 2018, 34, 7922–7932. [Google Scholar] [CrossRef]
- Gonzalez, J.O.; Alatise, O.; Hu, J.; Ran, L.; Mawby, P. An investigation of temperature-sensitive electrical parameters for SiC power MOSFETs. IEEE Trans. Power Electron. 2016, 32, 7954–7966. [Google Scholar] [CrossRef]
- Luo, H.; Mao, J.; Li, C.; Iannuzzo, F.; Li, W.; He, X. Online junction temperature and current simultaneous extraction for SiC MOSFETs with electroluminescence effect. IEEE Trans. Power Electron. 2021, 37, 21–25. [Google Scholar] [CrossRef]
- Hu, B.; Hu, Z.; Ran, L.; Ng, C.; Jia, C.; McKeever, P.; Tavner, P.J.; Zhang, C.; Jiang, H.; Mawby, P. Heat-flux-based condition monitoring of multichip power modules using a two-stage neural network. IEEE Trans. Power Electron. 2020, 36, 7489–7500. [Google Scholar] [CrossRef]
- Schweitzer, D.; Pape, H.; Chen, L.; Kutscherauer, R.; Walder, M. Transient dual interface measurement—A new JEDEC standard for the measurement of the junction-to-case thermal resistance. In Proceedings of the 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 20–24 March 2011. [Google Scholar]
- Hanif, A.; Yu, Y.; DeVoto, D.; Khan, F. A comprehensive review toward the state-of-the-art in failure and lifetime predictions of power electronic devices. IEEE Trans. Power Electron. 2018, 34, 4729–4746. [Google Scholar] [CrossRef]
- Peyghami, S.; Wang, H.; Davari, P.; Blaabjerg, F. Mission-profile-based system-level reliability analysis in DC microgrids. IEEE Trans. Ind. Appl. 2019, 55, 5055–5067. [Google Scholar] [CrossRef]
- Balachandran, A.; Sudarshan, T.; Chandrashekhar, M. Basal plane dislocation free recombination layers on low-doped buffer layer for power devices. Cryst. Growth Des. 2017, 17, 1550–1557. [Google Scholar] [CrossRef]
- Yang, F.; Ugur, E.; Pu, S.; Akin, B.; Das, M. Investigation of aging’s effect on the conduction and switching loss in SiC MOSFETs. In Proceedings of the Energy Conversion Congress and Exposition, Baltimore, MD, USA, 29 September–3 October 2019. [Google Scholar]
- Baker, N.; Munk-Nielsen, S.; Bęczkowski, S. Test setup for long term reliability investigation of Silicon Carbide MOSFETs. In Proceedings of the 15th European Conference on Power Electronics and Applications, Lille, France, 2–6 September 2013. [Google Scholar]
- Ugur, E.; Akin, B. Aging assessment of discrete SiC MOSFETs under high temperature cycling tests. In Proceedings of the Energy Conversion Congress and Exposition, Cincinnati, OH, USA, 1–5 October 2017. [Google Scholar]
- Luo, H.; Iannuzzo, F.; Turnaturi, M. Role of threshold voltage shift in highly accelerated power cycling tests for SiC MOSFET modules. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 1657–1667. [Google Scholar] [CrossRef]
- Luo, H.; Baker, N.; Iannuzzo, F.; Blaabjerg, F. Die degradation effect on aging rate in accelerated cycling tests of SiC power MOSFET modules. Microelectron. Reliab. 2017, 76, 415–419. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, R.; Iannuzzo, F.; Wang, H. Aging investigation of the latest standard dual power modules using improved interconnect technologies by power cycling test. Microelectron. Reliab. 2022, 138, 114740. [Google Scholar] [CrossRef]
- Ziemann, T.; Grossner, U.; Neuenschwander, J. Power cycling of commercial SiC MOSFETs. In Proceedings of the 6th Workshop on Wide Bandgap Power Devices and Applications, Atlanta, GA, USA, 31 October–2 November 2018. [Google Scholar]
- Zhang, Z.; Chen, C.; Suetake, A.; Hsieh, M.-C.; Suganuma, K. Reliability of Ag sinter-joining die attach under harsh thermal cycling and power cycling tests. J. Electron. Mater. 2021, 50, 6597–6606. [Google Scholar] [CrossRef]
- Wagner, F.; Reber, G.; Rittner, M.; Guyenot, M.; Nitzsche, M.; Wunderle, B. Power cycling of sic-mosfet single-chip modules with additional measurement cycles for life end determination. In Proceedings of the 11th International Conference on Integrated Power Electronics Systems, Berlin, Germany, 24–26 March 2020. [Google Scholar]
- Fang, C.; Tang, X.; Qin, G.; Ke, H.; Wu, Y.; Zhang, J.; Chang, G.; Luo, H. Influence of Al/CucorAl wire bonding on reliability of SiC devices. In Proceedings of the Workshop on Wide Bandgap Power Devices and Applications in Asia, Wuhan, China, 25–27 August 2021. [Google Scholar]
- Guyenot, M.; Reinold, M.; Maniar, Y.; Rittner, M. Advanced wire bonding for high reliability and high temperature applications. Int. Symp. Microelectron. 2016, 1, 214–218. [Google Scholar] [CrossRef]
- Tang, G.; Wai, L.C.; Lim, T.G.; Ye, Y.L.; Ravinder, P.S.; Bu, L.; Lau, B.L.; Chai, T.C.; Yamamoto, K.; Zhang, X. Development of high power and high junction temperature SiC based power packages. In Proceedings of the 69th Electronic Components and Technology Conference, Las Vegas, NV, USA, 28–31 May 2019. [Google Scholar]
- Kim, D.; Lee, B.; Lee, T.-I.; Noh, S.; Choe, C.; Park, S.; Kim, M. Power cycling tests under driving ΔTj= 125° C on the Cu clip bonded EV power module. Microelectron. Reliab. 2022, 138, 114652. [Google Scholar] [CrossRef]
- Singh, B.P.; Choudhury, K.R.; Norrga, S.; Kostov, K.; Nee, H.-P. Analysis of the Performance of Different Packaging Technologies of SiC Power Modules during Power Cycling Test. In Proceedings of the 29th International Workshop on Thermal Investigations of ICs and Systems, Budapest, Hungary, 27–29 September 2023. [Google Scholar]
- Tang, G.; Wai, L.C.; Lim, S.B.; Ye, Y.L.; Lau, B.L.; Yamamoto, K.; Zhang, X. Development of a novel lead frame based double side liquid cooling high performance SiC power module. In Proceedings of the 71st Electronic Components and Technology, San Diego, CA, USA, 1–4 June 2021. [Google Scholar]
- Kegley, L.E.; Foster, T.; Seal, S.; Shaw, R.; McPherson, B.; Passmore, B.; Schupbach, M.; McNutt, T. Comparison of Silicon Carbide Packages with Different Solder Attach Materials under High Temperature, Fast Power Cycling Conditions. In Proceedings of the International Workshop on Integrated Power Packaging, Toulouse, France, 24–26 April 2019. [Google Scholar]
- Bajwa, A.A.; Wilde, J.J.M.R. Reliability modeling of Sn–Ag transient liquid phase die-bonds for high-power SiC devices. Microelectron. Reliab. 2016, 60, 116–125. [Google Scholar] [CrossRef]
- Ehrhardt, C.; Hutter, M.; Weber, C.; Lang, K.D. Active power cycling results using copper tin TLPB joints as new die-attach technology. In Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 5–7 June 2015. [Google Scholar]
- Dai, J.; Li, J.; Agyakwa, P.; Corfield, M.; Johnson, C. Comparative thermal and structural characterization of sintered nano-silver and high-lead solder die attachments during power cycling. IEEE Trans. Device Mater. Reliab. 2018, 18, 256–265. [Google Scholar] [CrossRef]
- Schmidt, R.; Werner, R.; Casady, J.; Hull, B.; Barkley, A. Power cycle testing of sintered SiC-MOSFETs. In Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 16–18 May 2017. [Google Scholar]
- Nagao, S.; Fujita, H.; Shimoyama, A.; Seki, S.; Zhang, H.; Suganuma, K. Power cycle reliability of SiC devices with metal-sinter die-attach and thermostable molding. Int. Symp. Microelectron. 2017, 1, 8–12. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, C.; Nagao, S.; Suganuma, K.; Bahman, A.S.; Iannuzzo, F. Reliability analysis of sintered Cu joints under power cycle condition. In Proceedings of the 20th International Conference on Electronic Packaging, Hong Kong, China, 12–15 August 2019. [Google Scholar]
- Yasui, K.; Hayakawa, S.; Ishigaki, T.; Morita, T.; Tabata, T.; Takayanagi, Y.; Inoue, Y.; Murata, T.; Tadano, A.; Kinoshita, K. A 3.3 kV 1000 A high power density SiC power module with sintered copper die attach technology. In Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 7–9 May 2019. [Google Scholar]
- Yasui, K.; Hayakawa, S.; Funaki, T. Reliability Improvement of 3.3 kV Full-SiC Power Modules for Power Cycling Tests with Sintered Copper Die Attach Technology. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 13, 1476–1485. [Google Scholar] [CrossRef]
- Dai, J.; Wang, Y.; Grant, T.; Wang, W.; Mat, M.; Morshed, M. High temperature reliability of pressureless sintered Cu joints for power SiC die attachment. Microelectron. Reliab. 2023, 150, 115219. [Google Scholar] [CrossRef]
- Chen, C.; Kim, D.; Liu, Y.; Sekiguchi, T.; Su, Y.; Long, X.; Liu, C.; Liu, C.; Suganuma, K. Development of micron-sized CueAg composite paste for oxidation-free bare Cu bonding in air condition and its deterioration mechanism during aging and power cycling tests. J. Mater. Res. Technol. 2023, 24, 8967. [Google Scholar] [CrossRef]
- Dai, S.; Liu, Z.; Wang, Z.; Zhao, Y.; Li, J. Study of Electrical Contacts Fatigue and Degradation Evaluation for Press-Pack IEGT Under Power Cycling Tests. Jestpe 2021, 10, 5168–5180. [Google Scholar] [CrossRef]
- Cui, H. Accelerated temperature cycle test and Coffin-Manson model for electronic packaging. In Proceedings of the Annual Reliability and Maintainability Symposium, Alexandria, VA, USA, 24–27 January 2005. [Google Scholar]
- Qu, G.; Deng, Z.; Guo, W.; Peng, Z.; Jia, Q.; Deng, E.; Zhang, H. The Heat-Dissipation Sintered Interface of Power Chip and Heat Sink and Its High-Temperature Thermal Analysis. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 816–822. [Google Scholar] [CrossRef]
- Zhang, H.; He, S.; Qu, G.; Guo, W. Improved thermal conductivity and reliability through graphene reinforced nanopaste for power devices in new energy vehicles. IEEE Trans. Compon. Packag. Manuf. Technol. 2024, 14, 52–60. [Google Scholar] [CrossRef]
- Yin, C.; Wumaeraili, K.; Zhang, Y.; Wu, Y.; Zhang, J.; Guo, W.; Zhu, Y.; Song, X.; Jia, Q.; Zhang, H. Novel Ag-Cu foam sheet with multi-layer composite structure for high performance joining of SiC power chips. Mater. Charact. 2024, 209, 113696. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Jia, Q.; Yin, C.; Deng, Z.; Guo, W.; Wan, Z. Novel SiC-Based Power Device Bonding Materials of Nano Foam Sheet and Its Characteristic and Properties. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 897–905. [Google Scholar] [CrossRef]
- Wang, J.; Chung, H.; Li, R. Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance. IEEE Trans. Power Electron. 2012, 28, 573–590. [Google Scholar] [CrossRef]
- Yan, Q.; Yuan, X.; Geng, Y.; Charalambous, A.; Wu, X. Performance evaluation of split output converters with SiC MOSFETs and SiC Schottky diodes. IEEE Trans. Power Electron. 2016, 32, 406–422. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Jia, Q.; Wang, Y.; Zhang, H.; Ma, L.; Zou, G.; Guo, F. Review on Power Cycling Reliability of SiC Power Device. Electron. Mater. 2024, 5, 80-100. https://doi.org/10.3390/electronicmat5020007
Gao X, Jia Q, Wang Y, Zhang H, Ma L, Zou G, Guo F. Review on Power Cycling Reliability of SiC Power Device. Electronic Materials. 2024; 5(2):80-100. https://doi.org/10.3390/electronicmat5020007
Chicago/Turabian StyleGao, Xu, Qiang Jia, Yishu Wang, Hongqiang Zhang, Limin Ma, Guisheng Zou, and Fu Guo. 2024. "Review on Power Cycling Reliability of SiC Power Device" Electronic Materials 5, no. 2: 80-100. https://doi.org/10.3390/electronicmat5020007
APA StyleGao, X., Jia, Q., Wang, Y., Zhang, H., Ma, L., Zou, G., & Guo, F. (2024). Review on Power Cycling Reliability of SiC Power Device. Electronic Materials, 5(2), 80-100. https://doi.org/10.3390/electronicmat5020007