Exploring SGLT-2 Inhibitors: Benefits beyond the Glucose-Lowering Effect—What Is New in 2023?
Abstract
:1. Introduction
1.1. An Overview of SGLT-2 Inhibitors
1.2. Mechanism of Action
1.3. Adverse Effects
2. Relevant Sections
2.1. Renoprotective Benefits
2.1.1. What Are the Proposed Theories or Potential Mechanisms of SGLT-2 Inhibitors in Providing Renal Benefits?
2.1.2. What Is the Evidence of SGLT-2 Inhibitors in Kidney Protection?
2.1.3. Canagliflozin
2.1.4. Dapagliflozin
2.1.5. Empagliflozin
2.1.6. Ertugliflozin
2.2. Clinical Implications
Safety
3. Cardiovascular Benefits
3.1. What Are the Proposed Theories or Potential Mechanisms of SGLT-2 Inhibitors in Providing CV Benefits?
3.2. What Is the Evidence of SGLT-2 Inhibitors in Reducing CV Outcomes?
3.2.1. Canagliflozin
3.2.2. Dapagliflozin
3.2.3. Empagliflozin
3.2.4. Ertugliflozin
3.2.5. Clinical Implications
4. Heart Failure Benefits
4.1. What Are the Proposed Theories or Potential Mechanisms of SGLT-2 Inhibitors in Providing HF Benefits?
4.2. What Is the Evidence of SGLT-2 Inhibitors in Reducing the Risks of Hospitalization due to HF?
4.2.1. Canagliflozin
4.2.2. Dapagliflozin
4.2.3. Empagliflozin
4.2.4. Ertugliflozin
4.2.5. Sotagliflozin
4.3. Clinical Implications
5. Public Health Impact
6. Discussion
Another New Agent in the Class
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 29 July 2023).
- CDC. National Diabetes Statistics Report. Center for Disease Control and Prevention. Available online: https://www.cdc.gov/diabetes/data/statistics-report/index.html (accessed on 29 July 2023).
- CDC. Type 2 Diabetes. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/diabetes/basics/type2.html#:~:text=Healthy%20eating%20is%20your%20recipe (accessed on 29 July 2023).
- CDC. How Type 2 Diabetes Affects Your Workforce. National Diabetes Prevention Program. Diabetes. Available online: https://www.cdc.gov/diabetes/prevention/how-type2-affects-workforce.htm (accessed on 29 July 2023).
- American Diabetes Association. Standards of Care in Diabetes—2023. Available online: https://diabetesjournals.org/care/issue/46/Supplement_1 (accessed on 29 July 2023).
- Kannel, W.B.; Hjortland, M.; Castelli, W.P. Role of diabetes in congestive heart failure: The Framingham study. Am. J. Cardiol. 1974, 34, 29–34. [Google Scholar] [CrossRef] [PubMed]
- CDC. Coexisting Conditions and Complications. Diabetes. Available online: https://www.cdc.gov/diabetes/data/statistics-report/coexisting-conditions-complications.html (accessed on 29 July 2023).
- Cas, A.D.; Khan, S.S.; Butler, J.; Mentz, R.J.; Bonow, R.O.; Avogaro, A.; Tschoepe, D.; Doehner, W.; Greene, S.J.; Senni, M.; et al. Impact of Diabetes on Epidemiology, Treatment, and Outcomes of Patients with Heart Failure. JACC Heart Fail. 2015, 3, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Brenzavvy (Bexagliflozin); TheracosBio, LLC: Marlborough, MA, USA, 2023.
- Inpefa (Sotagliflozin); Lexicon Pharmaceuticals, Inc.: The Woodlands, TX, USA, 2023.
- Invokana (canagliflozin); Janssen Pharmaceuticals, Inc.: Titusville, NJ, USA, 2023.
- Farxiga (dapagliflozin); AstraZeneca Pharmaceutical LP: Wilmington, DE, USA, 2020.
- Jardiance (empagliflozin); Boehringer Ingelheim Pharmaceuticals, Inc.: Ridgefield, CT, USA, 2022.
- Steglatro (ertugliflozin); Merck & Co, Inc.: Whitehouse Station, NJ, USA, 2021.
- Bailey, C.J.; Day, C.; Bellary, S. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Curr. Diabetes Rep. 2022, 22, 39–52. [Google Scholar] [CrossRef]
- Kalra, S. Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Ther. 2014, 5, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Al-Jobori, H.; Daniele, G.; Cersosimo, E.; Triplitt, C.; Mehta, R.; Norton, L.; DeFronzo, R.A.; Abdul-Ghani, M. Empagliflozin and Kinetics of Renal Glucose Transport in Healthy Individuals and Individuals With Type 2 Diabetes. Diabetes 2017, 66, 1999–2006. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. FDA Removes Boxed Warning about Risk of Leg and Foot Amputations for the Diabetes Medicine Canagliflozin (Invokana, Invokamet, Invokamet XR). Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-removes-boxed-warning-about-risk-leg-and-foot-amputations-diabetes-medicine-canagliflozin (accessed on 29 July 2023).
- Vallon, V.; Thomson, S.C. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia 2017, 60, 215–225. [Google Scholar] [CrossRef]
- Varghese, R.T.; Jialal, I. Diabetic Nephropathy; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Catrina, S.-B.; Zheng, X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia 2021, 64, 709–716. [Google Scholar] [CrossRef]
- Jang, H.-S.; Noh, M.R.; Kim, J.; Padanilam, B.J. Defective Mitochondrial Fatty Acid Oxidation and Lipotoxicity in Kidney Diseases. Front. Med. 2020, 7, 65. [Google Scholar] [CrossRef]
- Szablewski, L. Distribution of glucose transporters in renal diseases. J. Biomed. Sci. 2017, 24, 64. [Google Scholar] [CrossRef]
- Banerjee, M.; Pal, R.; Mukhopadhyay, S. Can SGLT2 inhibitors prevent incident gout? A systematic review and meta-analysis. Acta Diabetol. 2022, 59, 783–791. [Google Scholar] [CrossRef]
- Barutta, F.; Bruno, G.; Grimaldi, S.; Gruden, G. Inflammation in diabetic nephropathy: Moving toward clinical biomarkers and targets for treatment. Endocrine 2015, 48, 730–742. [Google Scholar] [CrossRef]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef]
- Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 1425–1435. [Google Scholar] [CrossRef]
- Spertus, J.A.; Birmingham, M.C.; Nassif, M.; Damaraju, C.V.; Abbate, A.; Butler, J.; Lanfear, D.E.; Lingvay, I.; Kosiborod, M.N.; Januzzi, J.L. The SGLT2 inhibitor canagliflozin in heart failure: The CHIEF-HF remote, patient-centered randomized trial. Nat. Med. 2022, 28, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; de Zeeuw, D.; Mahaffey, K.W.; Fulcher, G.; Erondu, N.; Shaw, W.; Barrett, T.D.; Weidner-Wells, M.; Deng, H.; Matthews, D.R.; et al. Canagliflozin and renal outcomes in type 2 diabetes: Results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018, 6, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; Von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef]
- Cherney, D.Z.; Zinman, B.; Inzucchi, S.E.; Koitka-Weber, A.; Mattheus, M.; von Eynatten, M.; Wanner, C. Effects of empagliflozin on the urinary albumin-to creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: An exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Diabetes Endocrinol. 2017, 5, 610–621. [Google Scholar] [CrossRef]
- Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; Ng, S.Y.A.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- McGuire, D.K.; Shih, W.J.; Cosentino, F.; Charbonnel, B.; Cherney, D.Z.I.; Dagogo-Jack, S.; Pratley, R.; Greenberg, M.; Wang, S.; Huyck, S.; et al. Association of SGLT2 Inhibitors with Cardiovascular and Kidney Outcomes in Patients with Type 2 Diabetes. JAMA Cardiol. 2021, 6, 148. [Google Scholar] [CrossRef]
- Kim, S.H.; Chang, T.I.; Mahaffey, K.W. A Call for a New Paradigm for Diabetes Care in the Era of Sodium–Glucose Cotransporter 2 Inhibitors (SGLT2i). Cardiol. Ther. 2020, 9, 219–225. [Google Scholar] [CrossRef]
- Diabetes Work Group. Kidney Disease: Improving Global Outcomes (KDIGO) KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [Google Scholar] [CrossRef]
- Schernthaner, G.; Shehadeh, N.; Ametov, A.S.; Bazarova, A.V.; Ebrahimi, F.; Fasching, P.; Janež, A.; Kempler, P.; Konrāde, I.; Lalić, N.M.; et al. Worldwide inertia to the use of cardiorenal protective glucose-lowering drugs (SGLT2i and GLP-1 RA) in high-risk patients with type 2 diabetes. Cardiovasc. Diabetol. 2020, 19, 185. [Google Scholar] [CrossRef] [PubMed]
- Halimi, S.; Vergès, B. Adverse effects and safety of SGLT-2 inhibitors. Diabetes Metab. 2014, 40 (Suppl. S1), S28–S34. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Cherney, D.Z. Clinical Implications of an Acute Dip in eGFR after SGLT2 Inhibitor Initiation. Clin. J. Am. Soc. Nephrol. 2021, 16, 1278–1280. [Google Scholar] [CrossRef] [PubMed]
- Plewa, M.C.; Bryant, M.; King-Thiele, R. Euglycemic Diabetic Ketoacidosis; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554570/ (accessed on 29 July 2023).
- Preoperative Cessation of SGLT2i. American College of Cardiology. Available online: https://www.acc.org/latest-in-cardiology/articles/2022/10/07/17/21/preoperative-cessation-of-sglt2i (accessed on 29 July 2023).
- Seki, H.; Ideno, S.; Shiga, T.; Watanabe, H.; Ono, M.; Motoyasu, A.; Noguchi, H.; Kondo, K.; Yoshikawa, T.; Hoshijima, H.; et al. Sodium-glucose cotransporter 2 inhibitor-associated perioperative ketoacidosis: A systematic review of case reports. J. Anesthesia 2023, 37, 465–473. [Google Scholar] [CrossRef]
- Thomas, M.C.; Cherney, D.Z.I. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 2018, 61, 2098–2107. [Google Scholar] [CrossRef]
- Sattar, N.; McLaren, J.; Kristensen, S.L.; Preiss, D.; McMurray, J.J. SGLT2 Inhibition and cardiovascular events: Why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia 2016, 59, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Gallo, L.A.; Wright, E.M.; Vallon, V. Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences. Diabetes Vasc. Dis. Res. 2015, 12, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; McMurray, J.J.V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia 2018, 61, 2108–2117. [Google Scholar] [CrossRef]
- FDA. Guidance for Industry: Diabetes Mellitus—Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes; U.S. Department of Health and Human Resources: Washington, DC, USA, 2008. [Google Scholar]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Brown, E.; Wilding, J.P.; Barber, T.M.; Alam, U.; Cuthbertson, D.J. Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: Mechanistic possibilities. Obes. Rev. 2019, 20, 816–828. [Google Scholar] [CrossRef]
- Desouza, C.V.; Gupta, N.; Patel, A. Cardiometabolic Effects of a New Class of Antidiabetic Agents. Clin. Ther. 2015, 37, 1178–1194. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Type 2 Diabetes Mellitus: Evaluating the Safety of New Drugs for Improving Glycemic Control—Guidance for Industry. March 2020. Available online: https://www.fda.gov/media/135936/download (accessed on 29 July 2023).
- Hsia, D.S.; Grove, O.; Cefalu, W.T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr. Opin. Endocrinol. Diabetes 2017, 24, 73–79. [Google Scholar] [CrossRef]
- Heise, T.; Seewaldt-Becker, E.; Macha, S.; Hantel, S.; Pinnetti, S.; Seman, L.; Woerle, H.J. Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks' treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes. Metab. 2013, 15, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Chilton, R.; Tikkanen, I.; Cannon, C.P.; Crowe, S.; Woerle, H.J.; Broedl, U.C.; Johansen, O.E. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes. Metab. 2015, 17, 1180–1193. [Google Scholar] [CrossRef] [PubMed]
- Striepe, K.; Jumar, A.; Ott, C.; Karg, M.V.; Schneider, M.P.; Kannenkeril, D.; Schmieder, R.E. Effects of the Selective Sodium-Glucose Cotransporter 2 Inhibitor Empagliflozin on Vascular Function and Central Hemodynamics in Patients with Type 2 Diabetes Mellitus. Circulation 2017, 136, 1167–1169. [Google Scholar] [CrossRef]
- Solini, A.; Giannini, L.; Seghieri, M.; Vitolo, E.; Taddei, S.; Ghiadoni, L.; Bruno, R.M. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study. Cardiovasc. Diabetol. 2017, 16, 138. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2021, 384, 117–128. [Google Scholar] [CrossRef]
- Butler, J.; Hamo, C.E.; Filippatos, G.; Pocock, S.J.; Bernstein, R.A.; Brueckmann, M.; Cheung, A.K.; George, J.T.; Green, J.B.; Januzzi, J.L.; et al. The potential role and rationale for treatment of heart failure with sodium-glucose co-transporter 2 inhibitors. Eur. J. Heart Fail. 2017, 19, 1390–1400. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Docherty, K.F.; Claggett, B.L.; Jhund, P.S.; de Boer, R.A.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. SGLT2 inhibitors in patients with heart failure: A comprehensive meta-analysis of five randomised controlled trials. Lancet 2022, 400, 757–767, Erratum in Lancet 2023, 401, 104. [Google Scholar] [CrossRef]
- O’hara, D.V.; Jardine, M.J. SGLT2 inhibitors may prevent diabetes. Nat. Rev. Nephrol. 2022, 18, 203–204. [Google Scholar] [CrossRef]
- Eberly, L.A.; Yang, L.; Eneanya, N.D.; Essien, U.; Julien, H.; Nathan, A.S.; Khatana, S.A.M.; Dayoub, E.J.; Fanaroff, A.C.; Giri, J.; et al. Association of Race/Ethnicity, Gender, and Socioeconomic Status with Sodium-Glucose Cotransporter 2 Inhibitor Use Among Patients with Diabetes in the US. JAMA Netw. Open 2021, 4, e216139. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V. The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef]
- Lamprea-Montealegre, J.A.; Madden, E.; Tummalapalli, S.L.; Peralta, C.; Neilands, T.B.; Garcia, P.K.; Muiru, A.; Karliner, L.; Shlipak, M.G.; Estrella, M.M. Association of Race and Ethnicity with Prescription of SGLT2 Inhibitors and GLP1 Receptor Agonists Among Patients with Type 2 Diabetes in the Veterans Health Administration System. JAMA 2022, 328, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Sangha, V.; Lipska, K.; Lin, Z.; Inzucchi, S.E.; McGuire, D.K.; Krumholz, H.M.; Khera, R. Patterns of Prescribing Sodium-Glucose Cotransporter-2 Inhibitors for Medicare Beneficiaries in the United States. Circ. Cardiovasc. Qual. Outcomes 2021, 14, e008381. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.; Chiefari, E.; Caroleo, P.; Vero, R.; Brunetti, F.S.; Corigliano, D.M.; Arcidiacono, B.; Foti, D.P.; Puccio, L.; Brunetti, A. Long-Term Effectiveness and Safety of SGLT-2 Inhibitors in an Italian Cohort of Patients with Type 2 Diabetes Mellitus. J. Diabetes Res. 2019, 2019, 3971060. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Singh, R. Gender difference in cardiovascular outcomes with SGLT-2 inhibitors and GLP-1 receptor agonist in type 2 diabetes: A systematic review and meta-analysis of cardio-vascular outcome trials. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 181–187. [Google Scholar] [CrossRef]
Efficacy: SGLT-2 Inhibitors as Monotherapy in Placebo-Controlled Studies | ||||||||
---|---|---|---|---|---|---|---|---|
Canagliflozin [11] | Dapagliflozin [12] | Empagliflozin [13] | Ertugliflozin [14] | |||||
Invokana | Farxiga | Jardiance | Steglatro | |||||
26-week study | 24-week study | 24-week study | 26-week study | |||||
100 mg | 300 mg | 5 mg | 10 mg | 10 mg | 25 mg | 5 mg | 15 mg | |
A1C (%) Difference from Placebo | −0.91 | −1.16 | −0.5 | −0.7 | −0.7 | −0.9 | −0.6 | −0.7 |
Fasting Blood Glucose (mg/dL) | −36 | −43 | −19.9 | −24.7 | −31 | −36 | −19.4 | −24.8 |
2-Hour Post Prandial Glucose (mg/dL) | −48 | −64 | --- | --- | --- | --- | --- | --- |
Canagliflozin | Dapagliflozin | Empagliflozin | Ertugliflozin | |||||
26-week study | 24-week study | 24-week study | 26-week study | |||||
100 mg | 300 mg | 5 mg | 10 mg | 10 mg | 25 mg | 5 mg | 15 mg | |
Body Weight Reduction (kg) | −2.2 | −3.3 | --- | --- | −2.5 | −2.8 | −2 | −2.1 |
Body Weight Reduction (lb) | −4.84 | −7.26 | --- | --- | −5.5 | −6.16 | −4.4 | −4.62 |
Canagliflozin [11] 100 mg, 300 mg | Dapagliflozin [12] 5 mg, 10 mg | Empagliflozin [13] 10 mg, 25 mg | Ertugliflozin [14] 5 mg, 15 mg | |
---|---|---|---|---|
FDA-approved Indications |
|
|
|
|
Dosing | Based on eGFR:
| Based on eGFR:
|
| Based on eGFR:
|
Combination Therapies | canagliflozin and metformin | dapagliflozin and metformin; dapagliflozin and saxagliptin | empagliflozin and linagliptin; empagliflozin and metformin; empagliflozin, metformin and linagliptin | ertugliflozin and metformin; ertugliflozin and sitagliptin |
Canagliflozin [11] 100 mg, 300 mg | Dapagliflozin [12] 5 mg, 10 mg | Empagliflozin [13] 10 mg, 25 mg | Ertugliflozin [14] 5 mg, 15 mg | |
---|---|---|---|---|
Warnings/Precautions |
|
|
|
|
Adverse Events (incidence ≥ 5%) | Female genital mycotic infections; urinary tract infections; increased urination | Female genital mycotic infections; nasopharyngitis; urinary tract infections | Female genital mycotic infections; urinary tract infections | Female genital mycotic infections |
Contraindications | Hypersensitivity to canagliflozin with serious reactions such as anaphylaxis or angioedema; patients on dialysis | Hypersensitivity to dapagliflozin with serious reactions such as anaphylaxis, urticaria, or angioedema; patients on dialysis | Hypersensitivity to empagliflozin with serious reactions such as urticaria or angioedema; patients on dialysis | Hypersensitivity to ertugliflozin with serious reactions such as angioedema; patients on dialysis |
Canagliflozin 100 mg, 300 mg | Dapagliflozin 5 mg, 10 mg | Empagliflozin 10 mg, 25 mg | Ertugliflozin 5 mg, 15 mg | |
---|---|---|---|---|
Renal Trials | CREDENCE (2019): T2DM with albuminuric CKD, eGFR 30–89, UACR 300–5000, and were treated with RAS inhibitor: decrease kidney failure and CV events. No significant difference in rates of amputation or fracture. | DAPA-CKD (2020): eGFR 25–75 and UACR 200–5000: CKD patients with or without T2DM had a lower risk of in a sustained decline of: eGFR of at least 50%, ESKD, death from renal or CV causes, hospitalization from HF, and longer survival. | EMPA-KIDNEY (2023): Trial was stopped early due to clear positive efficacy in patients with CKD (eGFR 20–44 or eGFR 45–89 w/albuminuric). | Analysis of VERTIS-CV (2020): Decrease in the risk of sustained 40% decline in eGFR, less albuminuria, preserved eGFR over time in patients wtih T2DM and established ASCVD. |
CV Outcomes Trials | CANVAS (2017): Decreased CV death, non-fatal MI or nonfatal stroke in T2DM patients at high risk of CV disease. However, increased amputation of the toe or metatarsal. | DECLARE-TIMI (2019): T2DM with or at risk for ASCVD: decreased CV death or hospitalization for HF. No difference in MACE (CV death, MI, or Stroke). | EMPA-REG OUTCOME (2015): Decreased MACE (CV death, non-fatal MI, non-fatal stroke) and of death from any cause vs. placebo among T2DM patients with high CV risk | VERTIS-CV (2020): Patients with T2DM and ASCVD, ertugliflozin was noninferior to placebo with respect to MACE. |
Heart Failure Trials | CHIEF-HF remote (2022): Regardless of HF type and T2DM status 476 people HFrEF and HFpEF Study terminated early due to shifting priorities At 12 weeks, symptoms better with canagloflizin 100 mg [28] | DAPA-HF (2019): HF Class II-IV, LVEF ≤ 40%: Decreased risk of worsening HF (hospitalization or urgent care w/IV tx) or CV death, regardless if the patient was diabetic or not. DELIVER (2022): Primary endpoint met to reduce risk of CV death or worsening of HF in patients with HFpEF [29] | EMPEROR-REDUCED (2020): HF Class II-IV, LVEF ≤ 40%: Decreased CV death or hospitalization for HF, regardless if the patient was diabetic or not. EMPEROR-PRESERVED (2020): HF Class II-IV, LVEF >40%: Decreased CV death or hospitalization for HF, regardless if the patient was diabetic or not. | Analysis of VERTIS-CV (2020): T2DM with ASCVD: reduced first hospitalization for HF (HHF), total HHF, and total HHF/CV death. |
Renal Outcomes | |||||
---|---|---|---|---|---|
Randomized Control Trial (Sample Size) | Outcome Measure | Results | Explication (Of Statistical Significance) | ||
Treatment * | Placebo * | Hazard Ratio (95% CI); p-Value | Relative Risk, Absolute Risk, NNT, NNH | ||
(Events/1000 Patient-Year) | |||||
CANVAS PROGRAM (n = 10,142) Canagliflozin 100 mg, 300 mg | Progression of Albuminuria (n = 9015 with normoalbuminuria or microalbuminuria at baseline) | 89.4 | 128.7 | 0.73 (0.67–0.79); p = 0.0184 ^ | RR = 27% |
Regression of Albuminuria | 293.4 | 187.5 | 1.70 (1.51–1.91); p = 0.4587 ^ | --- | |
Renal Composite Outcome a | 5.5 | 9.0 | 0.60 (0.47–0.77); p = 0.3868 ^ | --- | |
CREDENCE (n = 4401) canagliflozin 100 mg | Primary Composite Outcome b | 43.2 | 61.2 | 0.70 (0.59–0.82); p = 0.00001 | RR = 30% |
End-Stage Kidney Disease e | 20.4 | 29.4 | 0.68 (0.54–0.86); p = 0.002 | RR = 31% | |
Doubling of Serum Creatinine Level | 20.7 | 33.8 | 0.60 (0.48–0.76); p < 0.001 | RR = 40% | |
Renal Death | 0.3 | 0.9 | N/A | --- | |
Secondary Composite Outcome | 27.0 | 40.4 | 0.66 (0.53–0.81); p < 0.001 | RR = 34% | |
DAPA-CKD (n = 4304) dapagliflozin 10 mg | Primary Composite Outcome d | 4.6 * | 7.5 * | 0.61 (0.51–0.72); p < 0.001 | RR = 39% NNT = 19 |
Decline in eGFR of ≥50% | 2.6 * | 4.8 * | 0.53 (0.42–0.67); p < 0.05 | RR = 47% | |
End-Stage Kidney Disease | 2.5 * | 3.8 * | 0.64 (0.50–0.82); p < 0.05 | RR = 36% | |
EMPA-REG OUTCOME (Progression of Kidney Disease) (n = 7020) empagliflozin 10 mg, 25 mg | Incident or Worsening Nephropathy or Cardiovascular Death | 60.7 | 95.9 | 0.61 (0.55–0.69); p < 0.001 | RR = 39% |
Incident or Worsening Nephropathy | 47.8 | 76.0 | 0.61 (0.53–0.70); p < 0.001 | RR = 39% | |
Progression to Macroalbuminuria | 41.8 | 64.9 | 0.62 (0.54–0.72); p < 0.001 | RR = 38% | |
Doubling of Serum Creatinine Level Accompanied by eGFR of ≤45 mL/min/1.73 m2 | 5.5 | 9.7 | 0.56 (0.39–0.79); p < 0.001 | RR = 44% | |
Renal-Replacement Therapy | 1.0 | 2.1 | 0.45 (0.21–0.97); p = 0.04 | RR = 56% | |
Doubling of Serum Creatinine Level Accompanied by eGFR of ≤45 mL/min/1.73 m2, Initiation of Renal-Replacement Therapy, or Death from Renal Disease | 6.3 | 11.5 | 0.54 (0.40–0.75); p < 0.001 | RR = 46% | |
Incident Albuminuria in Patients with a Normal Albumin Level at Baseline | 252.5 | 266.0 | 0.95 (0.87–1.04); p = 0.25 | --- | |
VERTIS-CV (n = 8246) ertugliflozin 5 mg, 15 mg | Renal Composite Outcome c | 0.9 * | 1.2 * | 0.81 (0.63–1.04); p-value not available | --- |
Cardiovascular Outcomes | ||||
---|---|---|---|---|
Randomized Control Trial | Outcome Measure | Results (Events/1000 Patient-Year) | ||
Treatment * | Placebo * | Hazard Ratio (95% CI); p-Value | ||
CANVAS PROGRAM (n = 10,142) canagliflozin 100 mg, 300 mg | MACE e | 26.9 | 31.5 | 0.86 (0.75–0.97); p = 0.5980 ^ p = 0.02 for superiority; p < 0.001 noninferiority |
Death from CV Causes | 11.6 | 12.8 | 0.87 (0.72–1.06); p > 0.05 p = 0.9387 | |
Non-fatal MI | 9.7 | 11.6 | 0.85 (0.69–1.05); p > 0.05 p = 0.9777 | |
Non-fatal Stroke | 7.1 | 8.4 | 0.90 (0.71–1.15); p > 0.05 p = 0.4978 | |
EMPA-REG OUTCOME (n = 7020) empagliflozin 10 mg, 25 mg | MACE e | 37.4 | 43.9 | 0.86 (0.74–0.99); p = 0.04 for superiority; p < 0.001 noninferiority |
Death from CV Causes, Non-fatal MI, Non-fatal Stroke, or Hospitalization for Unstable Angina | 46.4 | 52.5 | 0.89 (0.78–1.01); p = 0.08 for superiority | |
Death from CV Causes | 12.4 | 20.2 | 0.62 (0.49–0.77); p < 0.001 | |
Non-fatal MI Excluding silent MI | 16.0 | 18.5 | 0.87 (0.70–1.09); p = 0.22 | |
Non-fatal Stroke | 11.2 | 9.1 | 1.24 (0.92–1.67); p = 0.16 | |
DECLARE-TIMI 58 (n = 17,160) dapagliflozin 10 mg | MACE | 22.6 | 24.2 | 0.93 (0.84–1.03); p = 0.17 |
MI | 11.7 | 13.2 | 0.89 (0.77–1.01); p > 0.05 | |
Ischemic Stroke | 6.9 | 6.8 | 1.01 (0.84–1.21); p > 0.05 | |
Death from CV Cause | 7.0 | 7.1 | 0.98 (0.82–1.17); p > 0.05 | |
CV Death or HHF | 12.2 | 14.7 | 0.83 (0.73–0.95); p = 0.005 | |
CREDENCE (n = 4401) canagliflozin 100 mg | CV Death | 19.0 | 24.4 | 0.78 (0.61–1.00); p = 0.05 |
CV Death or HHF | 31.5 | 45.4 | 0.69 (0.57–0.83); p < 0.001 | |
CV Death, MI, or Stroke | 38.7 | 48.7 | 0.80 (0.67–0.95); p = 0.01 | |
CV Death, MI, Stroke, or HHF or unstable angina | 49.4 | 66.9 | 0.74 (0.63–0.86); p-value not available | |
VERTIS CV (n = 8246) ertugliflozin 5 mg, 15 mg Note: events/100 patient-years | MACE e | 3.9 | 4.0 | 0.97 (0.85–1.11); p < 0.001 for non-inferiority |
CV Death | 1.8 | 1.9 | 0.88 (0.75–1.03); p > 0.05 | |
Nonfatal MI | 1.7 | 1.6 | 1.04 (0.86–1.27); p > 0.05 | |
Nonfatal Stroke | 0.8 | 0.8 | 1.00 (0.76–1.32); p > 0.05 | |
DAPA-HF (n = 4744) dapagliflozin 10 mg Note: events/100 patient-years | CV Death | 6.5 | 7.9 | 0.82 (0.69–0.98); p < 0.05 |
CV Death or HHF | 11.4 | 15.3 | 0.75 (0.65–0.85); p < 0.001 | |
EMPEROR-Reduced (n = 3730) empagliflozin 10 mg | Primary composite outcome k | 15.8 | 21.0 | 0.75 (0.65–0.86); p < 0.001 |
CV Death | 7.6 | 8.1 | 0.92 (0.75–1.12); p > 0.05 | |
EMPEROR-Preserved (n = 5988) empagliflozin 10 mg | Primary composite outcome l | 6.9 | 8.7 | 0.79 (0.69–0.90); p < 0.001 |
CV Death | 3.4 | 3.8 | 0.91 (0.76–1.09); p < 0.05 |
Heart Failure Outcomes | ||||
---|---|---|---|---|
Randomized Control Trial | Outcome Measure | Results (Events/1000 Patient-Year) | ||
Treatment * | Placebo * | Hazard Ratio (95% CI); p-Value | ||
CANVAS Program (n = 10,142) canagliflozin 100 mg, 300 mg | HHF | 5.5 | 8.7 | 0.67 (0.52–0.87); p < 0.05 p = 0.2359 |
CV mortality or HHF | 16.3 | 20.8 | 0.78 (0.67–0.91); p < 0.05 p = 0.4584 | |
EMPA-REG OUTCOME (n = 7020) empagliflozin 10 mg, 25 mg | HHF | 9.4 | 14.5 | 0.65 (0.50–0.85); p = 0.002 |
HHF or death from CV causes excluding fatal stroke | 19.7 | 30.1 | 0.66 (0.55–0.79); p < 0.001 | |
DECLARE-TIMI 58 (n = 17,160) dapagliflozin 10 mg | CV death or HHF | 12.2 | 14.7 | 0.83 (0.73–0.95); p < 0.005 |
HHF | 6.2 | 8.5 | 0.73 (0.61–0.88); p < 0.05 | |
CREDENCE (n = 4401) canagliflozin 100 mg | HHF | 15.7 | 25.3 | 0.61 (0.47–0.80); p < 0.001 |
DAPA-HF (n = 4744) dapagliflozin 10 mg Note: events/100 patient-years | Primary composite outcome j | 11.6 | 15.6 | 0.74 (0.65–0.85); p < 0.001 |
HHF | 6.9 | 9.8 | 0.70 (0.59–0.83); p < 0.05 | |
EMPEROR-Reduced (n = 3730) empagliflozin 10 mg Note: events/100 patient-years | Primary composite outcome k | 15.8 | 21.0 | 0.75 (0.65–0.86); p < 0.001 |
HHF | 10.7 | 15.5 | 0.69 (0.59–0.81); p < 0.05 | |
EMPEROR-Preserved (n = 5988) empagliflozin 10 mg | Primary composite outcome l | 6.9 | 8.7 | 0.79 (0.69–0.90); p < 0.001 |
HHF | 4.3 | 6.0 | 0.71 (0.60–0.83); p < 0.05 | |
VERTIS-CV (n = 8246) ertugliflozin 5 mg, 15 mg Note: events/100 patient-years | HHF | 0.7 | 1.1 | 0.70 (0.54–0.90); p < 0.05 |
Indication | To improve glycemic management for T2DM in adults as an adjunct therapy adding to diet and exercise |
Contraindication |
|
Warnings and Precautions |
|
Common Adverse Reactions |
|
Impaired Renal Function | Not recommended in those with eGFR lower than 30 mL/min/1.73 m2 |
Note | Due to potentially increase the risk for diabetic ketoacidosis, not recommended in patients with T1DM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, C.F.; Farnoudi, N.; Chen, J.; Shubrook, J.H. Exploring SGLT-2 Inhibitors: Benefits beyond the Glucose-Lowering Effect—What Is New in 2023? Endocrines 2023, 4, 630-655. https://doi.org/10.3390/endocrines4030045
Young CF, Farnoudi N, Chen J, Shubrook JH. Exploring SGLT-2 Inhibitors: Benefits beyond the Glucose-Lowering Effect—What Is New in 2023? Endocrines. 2023; 4(3):630-655. https://doi.org/10.3390/endocrines4030045
Chicago/Turabian StyleYoung, Clipper F., Neeka Farnoudi, Jenny Chen, and Jay H. Shubrook. 2023. "Exploring SGLT-2 Inhibitors: Benefits beyond the Glucose-Lowering Effect—What Is New in 2023?" Endocrines 4, no. 3: 630-655. https://doi.org/10.3390/endocrines4030045
APA StyleYoung, C. F., Farnoudi, N., Chen, J., & Shubrook, J. H. (2023). Exploring SGLT-2 Inhibitors: Benefits beyond the Glucose-Lowering Effect—What Is New in 2023? Endocrines, 4(3), 630-655. https://doi.org/10.3390/endocrines4030045