Higher Adiponectin Levels in Children and Adolescents with T1D Probably Contribute to the Osteopenic Phenotype through the RANKL/OPG System Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Evaluation
2.3. Biochemical Assays
2.4. Bone Density and Fat Mass Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Zheng, Y.; Abadi, M.R.H.; Ghafouri, Z.; Goes, S.M.; Johnston, J.J.D.; Nour, M.; Kontulainen, S. Bone deficits in children and youth with type 1 diabetes: A systematic review and meta-analysis. Bone 2022, 163, 116509. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.R.; Haynes, K.; Leonard, M.B.; Willi, S.M.; Denburg, M.R. Type 1 Diabetes Is Associated with an Increased Risk of Fracture Across the Life Span: A Population-Based Cohort Study Using the Health Improvement Network (THIN). Diabetes Care 2015, 38, 1913–1920. [Google Scholar] [CrossRef]
- Karsenty, G.; Khosla, S. The crosstalk between bone remodeling and energy metabolism: A translational perspective. Cell Metab. 2022, 34, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Niwczyk, O.; Grymowicz, M.; Szczęsnowicz, A.; Hajbos, M.; Kostrzak, A.; Budzik, M.; Maciejewska-Jeske, M.; Bala, G.; Smolarczyk, R.; Męczekalski, B. Bones and Hormones: Interaction between Hormones of the Hypothalamus, Pituitary, Adipose Tissue and Bone. Int. J. Mol. Sci. 2023, 24, 6840. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, J.; Kang, Q. Neuromodulation of bone: Role of different peptides and their interactions (Review). Mol. Med. Rep. 2021, 23, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chua, S., Jr. Leptin Function and Regulation. Compr. Physiol. 2017, 8, 351–369. [Google Scholar] [CrossRef]
- Pereira, S.; Cline, D.L.; Glavas, M.M.; Covey, S.D.; Kieffer, T.J. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr. Rev. 2021, 42, 1–28. [Google Scholar] [CrossRef]
- Reid, I.R.; A Baldock, P.; Cornish, J. Effects of Leptin on the Skeleton. Endocr. Rev. 2018, 39, 938–959. [Google Scholar] [CrossRef]
- Nguyen, T.M.D. Adiponectin: Role in physiology and pathophysiology. Int. J. Prev. Med. 2020, 11, 136. [Google Scholar] [CrossRef]
- China, S.P.; Sanyal, S.; Chattopadhyay, N. Adiponectin signaling and its role in bone metabolism. Cytokine 2018, 112, 116–131. [Google Scholar] [CrossRef]
- Shinoda, Y.; Yamaguchi, M.; Ogata, N.; Akune, T.; Kubota, N.; Yamauchi, T.; Terauchi, Y.; Kadowaki, T.; Takeuchi, Y.; Fukumoto, S.; et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J. Cell. Biochem. 2006, 99, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-F.; Shen, W.-J.; Zhang, Z.H.; Wang, L.J.; Kraemer, F.B. Adipocytes decrease Runx2 expression in osteoblastic cells: Roles of PPARγ and adiponectin. J. Cell. Physiol. 2010, 225, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Abbott, M.J.; Roth, T.M.; Ho, L.; Wang, L.; O’carroll, D.; Nissenson, R.A. Negative Skeletal Effects of Locally Produced Adiponectin. PLoS ONE 2015, 10, e0134290. [Google Scholar] [CrossRef]
- Pacheco-Pantoja, E.L.; Fraser, W.D.; Wilson, P.J.M.; Gallagher, J.A. Differential effects of adiponectin in osteoblast-like cells. J. Recept. Signal Transduct. Res. 2014, 34, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-H.; Guo, L.-J.; Xie, H.; Yuan, L.-Q.; Wu, X.-P.; Zhou, H.-D.; Liao, E.-Y. Adiponectin Stimulates RANKL and Inhibits OPG Expression in Human Osteoblasts through the MAPK Signaling Pathway. J. Bone Miner. Res. 2006, 21, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-P.; Yang, L.; Li, X.-P.; Xie, H.; Liao, E.-Y.; Wang, M.; Luo, X.-H. Effects of 17β-estradiol on adiponectin regulation of the expression of osteoprotegerin and receptor activator of nuclear factor-κB ligand. Bone 2012, 51, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Tsentidis, C.; Gourgiotis, D.; Kossiva, L.; Doulgeraki, A.; Marmarinos, A.; Galli-Tsinopoulou, A.; Karavanaki, K. Higher levels of s-RANKL and osteoprotegerin in children and adolescents with type 1 diabetes mellitus may indicate increased osteoclast signaling and predisposition to lower bone mass: A multivariate cross-sectional analysis. Osteoporos. Int. 2016, 27, 1631–1643. [Google Scholar] [CrossRef]
- Tsentidis, C.; Gourgiotis, D.; Kossiva, L.; Marmarinos, A.; Doulgeraki, A.; Karavanaki, K. Increased levels of Dickkopf-1 are indicative of Wnt/β-catenin downregulation and lower osteoblast signaling in children and adolescents with type 1 diabetes mellitus, contributing to lower bone mineral density. Osteoporos. Int. 2017, 28, 945–953. [Google Scholar] [CrossRef]
- Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 2006, 116, 1784–1792. [Google Scholar] [CrossRef]
- Katsiki, N.; Mikhailidis, D.P.; Banach, M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol. Sin. 2018, 39, 1176–1188. [Google Scholar] [CrossRef]
- Wędrychowicz, A.; Stec, M.; Sztefko, K.; Starzyk, J.B. Associations between Bone, Fat Tissue and Metabolic Control in Children and Adolescents with Type 1 Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2014, 122, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Majewska, K.A.; Majewski, D.; Skowrońska, B.; Stankiewicz, W.; Fichna, P. Serum leptin and adiponectin levels in children with type 1 diabetes mellitus—Relation to body fat mass and disease course. Adv. Med. Sci. 2016, 61, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Neumann, T.; Lodes, S.; Kästner, B.; Franke, S.; Kiehntopf, M.; Lehmann, T.; Müller, U.; Wolf, G.; Sämann, A. Osteocalcin, adipokines and their associations with glucose metabolism in type 1 diabetes. Bone 2016, 82, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.M.; Curran-Everett, D.; Hamman, R.F.; Maahs, D.; Mayer-Davis, E.J.; D’agostino, R.B.; West, N.; Dabelea, D. Determinants of adiponectin levels in young people with Type 1 diabetes. Diabet. Med. 2008, 25, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Galler, A.; Gelbrich, G.; Kratzsch, J.; Noack, N.; Kapellen, T.; Kiess, W. Elevated serum levels of adiponectin in children, adolescents and young adults with type 1 diabetes and the impact of age, gender, body mass index and metabolic control: A longitudinal study. Eur. J. Endocrinol. 2007, 157, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Leth, H.; Andersen, K.K.; Frystyk, J.; Tarnow, L.; Rossing, P.; Parving, H.-H.; Flyvbjerg, A. Elevated Levels of High-Molecular-Weight Adiponectin in Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 3186–3191. [Google Scholar] [CrossRef] [PubMed]
- Lindström, T.; Frystyk, J.; Hedman, C.A.; Flyvbjerg, A.; Arnqvist, H.J. Elevated circulating adiponectin in type 1 diabetes is associated with long diabetes duration. Clin. Endocrinol. 2006, 65, 776–782. [Google Scholar] [CrossRef]
- Pfleger, C.; Mortensen, H.B.; Hansen, L.; Herder, C.; Roep, B.O.; Hoey, H.; Aanstoot, H.-J.; Kocova, M.; Schloot, N.C.; Hvidøre Study Group on Childhood Diabetes. Association of IL-1ra and Adiponectin with C-Peptide and Remission in Patients with Type 1 Diabetes. Diabetes 2008, 57, 929–937. [Google Scholar] [CrossRef]
- Lecka-Czernik, B.; Rosen, C.J. Skeletal integration of energy homeostasis: Translational implications. Bone 2016, 82, 35–41. [Google Scholar] [CrossRef]
- Kadowaki, T.; Yamauchi, T. Adiponectin and Adiponectin Receptors. Endocr. Rev. 2005, 26, 439–451. [Google Scholar] [CrossRef]
- Fang, H.; Judd, R.L. Adiponectin Regulation and Function. Compr. Physiol. 2018, 8, 1031–1063. [Google Scholar] [PubMed]
- Aksu, N.M.; Aksoy, D.Y.; Akkaş, M.; Çinar, N.; Uçar, F.; Yildiz, B.O.; Usman, A. Adiponectin levels decrease independently of body mass index and diabetes type after the normalization of hyperglycemia. Turk. J. Med. Sci. 2020, 50, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Karamifar, H.; Habibian, N.; Amirhakimi, G.; Karamizadeh, Z.; Alipour, A. Adiponectin is a Good Marker for Metabolic State among Type 1 Diabetes Mellitus Patients. Iran. J. Pediatr. 2013, 23, 295–301. [Google Scholar] [PubMed]
- Pham, M.N.; Kolb, H.; Mandrup-Poulsen, T.; Battelino, T.; Ludvigsson, J.; Pozzilli, P.; Roden, M.; Schloot, N.C.; Trial, E.C.-P. Serum adipokines as biomarkers of beta-cell function in patients with type 1 diabetes: Positive association with leptin and resistin and negative association with adiponectin. Diabetes Metab. Res. Rev. 2013, 29, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Sayers, A.; Timpson, N.J.; Sattar, N.; Deanfield, J.; Hingorani, A.D.; Davey-Smith, G.; Tobias, J.H. Adiponectin and its association with bone mass accrual in childhood. J. Bone Miner. Res. 2010, 25, 2212–2220. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-P.; Li, X.-P.; Wang, M.; Zhao, L.-L.; Li, H.; Xie, H.; Lu, Z.-Y. Adiponectin exerts its negative effect on bone metabolism via OPG/RANKL pathway: An in vivo study. Endocrine 2014, 47, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-M.; Xie, H.; Yuan, L.-Q.; Luo, X.-H.; Liao, E.-Y. Adiponectin regulates the expression of osteoprotegerin and receptor activator of nuclear factor-kappaB ligand in human osteoblast. Zhonghua Yi Xue Za Zhi 2008, 88, 1562–1565. [Google Scholar]
- Sun, X.; Feng, X.; Tan, W.; Lin, N.; Hua, M.; Wei, Y.; Wang, F.; Li, N.; Zhang, M. Adiponectin exacerbates collagen-induced arthritis via enhancing Th17 response and prompting RANKL expression. Sci. Rep. 2015, 5, 11296. [Google Scholar] [CrossRef]
- Zhang, H.-Q.; Wang, L.-J.; Liu, S.-H.; Li, J.; Xiao, L.-G.; Yang, G.-T. Adiponectin regulates bone mass in AIS osteopenia via RANKL/OPG and IL6 pathway. J. Transl. Med. 2019, 17, 64. [Google Scholar] [CrossRef]
Characteristics | Overall (n = 80) | Controls (n = 40) | Patients (n = 40) | p |
---|---|---|---|---|
Gender (boys/girls) | 36/44 | 18/22 | 18/22 | 0.58 ** |
Chronological age (years) | 13.02 ± 3.39 | 13.04 ± 3.53 | 12.99 ± 3.3 | 0.39 * |
SDS BMI | 0.290 ± 0.93 | 0.298 ± 0.92 | 0.286 ± 0.83 | 0.52 * |
DEXA fat percentage (%) | 27.6 ± 9.7 | 28.3 ± 8.8 | 26.2 ± 10.1 | 0.35 * |
Physical activity (Kcal × kg−1 × day−1) | 34.2 ± 3.9 | 35.88 ± 4.69 | 33.91 ± 3.8 | 0.15 * |
HbA1c (%) (IFCC, mmol/mol) | 6.50 ± 2.23 (48 ± 24.4) | 4.75 ± 0.18 (28 ± 2.0) | 8.25 ± 1.95 (67 ± 21.3) | <0.001 * |
12-month HbA1c (%) (IFCC, mmol/mol) | 6.41 ± 2.00 (47 ± 21.9) | 4.75 ± 1.18 (28 ± 2.0) | 8.06 ± 1.58 (65 ± 17.3) | <0.001 * |
Fasting glucose (mg/dL) (mmol/L) | 124.8 ± 41.2 (6.92 ± 2.28) | 82.23 ± 5.63 (4.56 ± 0.32) | 167.4 ± 71.3 (9.26 ± 3.94) | <0.001 * |
HS-CRP | 0.32 (0.15, 0.97) | 0.39 (0.15, 1.13) | 0.32 (0.15, 0.72) | |
Log (HS-CRP) | −0.86 ± 1.0 | −0.77 ± 1.05 | −0.98 ± 0.94 | 0.22 * |
T-CHOL (mg/dL) | 160 ± 27 | 156 ± 25 | 164 ± 28 | 0.09 * |
LDL-C (mg/dL) | 89 ± 21 | 85 ± 21 | 93 ± 21 | 0.05 * |
HDL-C (mg/dL) | 61 ± 14 | 62 ± 13 | 60 ± 14 | 0.26 * |
Triglycerides (Tg’s) (mg/dL) | 58 ± 34 | 52 ± 15 | 65 ± 46 | 0.04 * |
Non-HDL-C (mg/dL) | 97 ± 26 | 94 ± 23 | 101 ± 29 | 0.14 * |
Apo-B (mg/dL) | 64 ± 15 | 61 ± 13 | 67 ± 17 | 0.03 * |
Apo-A1 (mg/dL) | 147 ± 24 | 147.2 ± 24.1 | 147.5 ± 24.5 | 0.47 * |
Lp(a) (mg/dL) | 9.7 (4.9, 20.8) | 9.3 (4.3, 21.9) | 10.4 (5.4, 17.4) | |
Log (Lp(a)) | 2.3 ± 0.9 | 2.2 ± 0.9 | 2.3 ± 0.9 | 0.35 * |
T-CHOL/HDL-C | 2.7 ± 0.6 | 2.6 ± 0.5 | 2.8 ± 0.6 | 0.06 * |
LDL-C/HDL-C | 1.5 ± 0.5 | 1.4 ± 0.5 | 1.6 ± 0.4 | 0.06 * |
LDL-C/APO-B | 1.3 ± 0.1 | 1.39 ± 0.2 | 0.38 ± 0.1 | 0.42 * |
Tg’s/HDL-C | 1.06 ± 0.8 | 0.9 ± 0.4 | 1.2 ± 1.1 | 0.06 * |
APO-B/APO-A1 | 0.44 ± 0.12 | 0.42 ± 0.1 | 0.46 ± 0.13 | 0.06 * |
Non-HDL-C/HDL-C | 1.7 ± 0.6 | 1.6 ± 0.5 | 1.8 ± 0.6 | 0.06 * |
Leptin (ng/mL) | 6.6 (2.6, 14.3) | 8.2 (3.07, 13.1) | 5.1 (1.5, 15.9) | |
√Leptin | 2.7 ± 1.4 | 2.8 ± 1.3 | 2.5 ± 1.4 | 0.16 * |
Adiponectin (ng/mL) | 13,586 (10,192, 18,667) | 12,503 (9693, 15,431) | 16,979 (11,683, 23,682) | |
Log (adiponectin) | 9.5 ± 0.4 | 9.4 ± 0.4 | 9.7 ± 0.5 | 0.005 * |
Adiponectin/leptin | 2380 (914, 5304) | 1628 (764, 4224) | 3404 (1074, 11,226) | |
Log (adiponectin/leptin) | 7.8 ± 1.3 | 7.5 ± 1.1 | 8.1 ± 1.4 | 0.01 * |
Insulin dose U × Kgr−1 × day−1 | 0.96 ± 0.22 | - |
√Leptin | Log (Adiponectin) | |||||
---|---|---|---|---|---|---|
Pearson’s and Partial Correlation Coefficients, p-Value | Overall (n = 80) | Controls (n = 40) | Patients (n = 40) | Overall (n = 80) | Controls (n = 40) | Patients (n = 40) |
gender * | 0.47, <0.001 | 0.26, 0.09 | 0.65, <0.001 | 0.016, 0.88 | −0.22, 0.17 | 0.21, 0.17 |
age * | 0.20, 0.06 | 0.10, 0.50 | 0.29, 0.06 | −0.25, 0.01 | −0.34, 0.02 | −0.21, 0.18 |
Tanner stage * | 0.24, 0.02 | 0.13, 0.41 | 0.36, 0.02 | −0.19, 0.07 | −0.27, 0.08 | −0.16, 0.29 |
SDS-BMI * | 0.43, <0.001 | 0.34, 0.03 | 0.48, 0.001 | −0.25, 0.02 | −0.10, 0.50 | −0.26, 0.09 |
DXA fat percentage | 0.42, <0.001 | 0.20, 0.22 | 0.70, <0.001 | −0.03, 0.73 | −0.14, 0.40 | −0.004, 0.98 |
DXA fat mass | 0.43, <0.001 | 0.27, 0.10 | 0.65, <0.001 | 0.11, 0.35 | 0.16, 0.32 | 0.12, 0.47 |
DXA lean mass | −0.20, 0.07 | −0.01, 0.91 | −0.38, 0.02 | −0.12, 0.27 | −0.25, 0.12 | −0.06, 0.73 |
physical activity | −0.13, 0.24 | −0.15, 0.34 | −0.07, 0.68 | −0.20, 0.07 | −0.22, 0.17 | −0.05, 0.74 |
insulin dose | - | - | −0.01, 0.93 | - | - | −0.09, 0.59 |
diabetes duration | - | - | 0.17, 0.31 | - | - | −0.0002, 0.99 |
HbA1c | −0.03, 0.74 | 0.002, 0.98 | −0.18, 0.26 | 0.39, <0.001 | 0.03, 0.98 | 0.39, 0.01 |
12-month HbA1c | −0.05, 0.65 | 0.002, 0.98 | −0.22, 0.17 | 0.36, 0.001 | 0.038, 0.98 | 0.37, 0.02 |
waist diameter | 0.36, 0.001 | 0.38, 0.01 | 0.40, 0.01 | 0.03, 0.76 | 0.35, 0.03 | −0.23, 0.17 |
hip diameter | 0.27, 0.01 | 0.25, 0.12 | 0.34, 0.03 | −0.09, 0.43 | −0.12, 0.47 | −0.02, 0.87 |
branchial diameter | −0.11, 0.31 | 0.17, 0.30 | −0.19, 0.23 | 0.05, 0.60 | 0.04, 0.78 | 0.04, 0.80 |
thigh diameter | 0.22, 0.05 | 0.17, 0.29 | 0.30, 0.07 | −0.049, 0.66 | 0.17, 0.31 | −0.09, 0.56 |
calf diameter | −0.04, 0.67 | 0.14, 0.40 | −0.11, 0.48 | 0.14, 0.19 | 0.06, 0.69 | 0.16, 0.33 |
biceps skinfold | 0.26, 0.01 | 0.26, 0.11 | 0.22, 0.17 | −0.13, 0.24 | 0.01, 0.92 | −0.31, 0.06 |
triceps skinfold | 0.38, <0.001 | 0.31, 0.05 | 0.43, 0.006 | 0.12, 0.27 | 0.03, 0.82 | 0.09, 0.56 |
subscapular skinfold | 0.27, 0.01 | 0.24, 0.13 | 0.34, 0.03 | −0.10, 0.35 | −0.18, 0.27 | −0.08, 0.62 |
suprailiac skinfold | 0.40, <0.001 | 0.40, 0.01 | 0.45, 0.004 | 0.04, 0.69 | 0.05, 0.75 | −0.001, 0.99 |
abdominal skinfold | 0.27, 0.01 | 0.15, 0.34 | 0.36, 0.02 | 0.09, 0.41 | −0.12, 0.47 | 0.23, 0.15 |
thigh skinfold | 0.40, <0.001 | 0.36, 0.02 | 0.48, 0.002 | 0.19, 0.09 | 0.17, 0.30 | 0.09, 0.57 |
calf skinfold | 0.39, <0.001 | 0.55, <0.001 | 0.22, 0.18 | −0.02, 0.81 | 0.13, 0.44 | −0.11, 0.48 |
T-CHOL | 0.17, 0.13 | 0.013, 0.93 | 0.24, 0.13 | 0.15, 0.17 | −0.06, 0.68 | 0.12, 0.46 |
triglycerides | 0.08, 0.47 | −0.04, 0.78 | 0.14, 0.39 | 0.31, 0.005 | −0.02, 0.86 | 0.35, 0.02 |
HDL-C | −0.009, 0.93 | −0.06, 0.71 | −0.13, 0.42 | 0.12, 0.26 | 0.20, 0.22 | 0.01, 0.91 |
LDL-C | 0.13, 0.25 | 0.07, 0.67 | 0.18, 0.27 | 0.05, 0.61 | −0.11, 0.48 | 0.014, 0.93 |
Apo-B | 0.06, 0.57 | −0.07, 0.65 | 0.16, 0.36 | 0.09, 0.45 | −0.27, 0.11 | 0.12, 0.50 |
Apo-A1 | −0.05, 0.68 | −0.14, 0.39 | −0.11, 0.52 | 0.08, 0.47 | 0.14, 0.39 | 0.03, 0.85 |
log (Lp(a)) | 0.04, 0.71 | 0.10, 0.56 | 0.008, 0.96 | 0.04, 0.73 | 0.06, 0.62 | −0.004, 0.98 |
√Leptin | Log (Adiponectin) | |||||
---|---|---|---|---|---|---|
Partial Correlation Coefficients, p-Value | Overall (n = 80) | Controls (n = 40) | Patients (n = 40) | Overall (n = 80) | Controls (n = 40) | Patients (n = 40) |
log (HS-CRP) | 0.06, 0.61 | 0.007, 0.97 | 0.43, 0.06 | −0.15, 0.27 | −0.24, 0.19 | 0.19, 0.40 |
IGF-1 | 0.03, 0.78 | 0.04, 0.77 | 0.09, 0.55 | −0.16, 0.14 | −0.01, 0.94 | −0.21, 0.20 |
log (PTH) | −0.05, 0.66 | −0.12, 0.44 | 0.12, 0.45 | 0.08, 0.43 | 0.04, 0.78 | 0.20, 0.21 |
√ALP | −0.15, 0.17 | −0.09, 0.57 | −0.26, 0.13 | 0.01, 0.89 | 0.01, 0.92 | −0.06, 0.73 |
dickkopf-1 | 0.009, 0.93 | 0.24, 0.13 | −0.18, 0.27 | −0.009, 0.93 | −0.06, 0.72 | −0.07, 0.64 |
sclerostin | −0.02, 0.80 | −0.20, 0.21 | −0.21, 0.20 | 0.12, 0.26 | 0.08, 0.63 | 0.07, 0.67 |
log (CTX) | 0.13, 0.25 | 0.22, 0.18 | 0.06, 0.70 | −0.03, 0.76 | 0.12, 0.44 | −0.04, 0.77 |
log (osteocalcin) | 0.06, 0.56 | 0.15, 0.34 | 0.01, 0.94 | −0.004, 0.96 | 0.19, 0.24 | −0.07, 0.65 |
log (s-RANKL) | 0.20, 0.06 | 0.25, 0.12 | 0.20, 0.22 | 0.11, 0.30 | −0.18, 0.28 | 0.35, 0.03 |
OPG | −0.20, 0.07 | −0.26, 0.11 | −0.21, 0.20 | 0.23, 0.03 | 0.16, 0.33 | 0.16, 0.32 |
L1-L4 BMD Z-score | −0.15, 0.17 | −0.10, 0.27 | −0.10, 0.51 | −0.22, 0.05 | −0.22, 0.17 | −0.17, 0.30 |
WB BMD Z-score | −0.20, 0.06 | −0.09, 0.58 | −0.33, 0.04 | −0.17, 0.12 | −0.10, 0.53 | −0.13, 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsentidis, C.; Gourgiotis, D.; Kossiva, L.; Marmarinos, A.; Doulgeraki, A.; Karavanaki, K. Higher Adiponectin Levels in Children and Adolescents with T1D Probably Contribute to the Osteopenic Phenotype through the RANKL/OPG System Activation. Endocrines 2023, 4, 709-719. https://doi.org/10.3390/endocrines4040051
Tsentidis C, Gourgiotis D, Kossiva L, Marmarinos A, Doulgeraki A, Karavanaki K. Higher Adiponectin Levels in Children and Adolescents with T1D Probably Contribute to the Osteopenic Phenotype through the RANKL/OPG System Activation. Endocrines. 2023; 4(4):709-719. https://doi.org/10.3390/endocrines4040051
Chicago/Turabian StyleTsentidis, Charalampos, Dimitrios Gourgiotis, Lydia Kossiva, Antonios Marmarinos, Artemis Doulgeraki, and Kyriaki Karavanaki. 2023. "Higher Adiponectin Levels in Children and Adolescents with T1D Probably Contribute to the Osteopenic Phenotype through the RANKL/OPG System Activation" Endocrines 4, no. 4: 709-719. https://doi.org/10.3390/endocrines4040051
APA StyleTsentidis, C., Gourgiotis, D., Kossiva, L., Marmarinos, A., Doulgeraki, A., & Karavanaki, K. (2023). Higher Adiponectin Levels in Children and Adolescents with T1D Probably Contribute to the Osteopenic Phenotype through the RANKL/OPG System Activation. Endocrines, 4(4), 709-719. https://doi.org/10.3390/endocrines4040051