Familial Diabetes in Obese PCOS Predisposes Individuals to Compensatory Hyperinsulinemia and Insulin Resistance (IR) Also for Reduced Hepatic Insulin Extraction (HIE)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Assay
2.3. Statistical Evaluation
3. Results
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Azziz, R.; Woods, K.S.; Reyna, R.; Key, T.J.; Knochenhauer, E.S.; Yildiz, B.O. The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 2004, 89, 2745–2749. [Google Scholar] [CrossRef] [PubMed]
- Hahn, S.; Bering van Halteren, W.; Kimmig, R.; Mann, K.; Gärtner, R.; Janssen, O.E. Diagnostik des Polycystischen Ovarsyndroms/Diagnostic Procedures in Polycystic Ovary Syndrome. Lab. Med. 2003, 27, 53–59. [Google Scholar] [CrossRef]
- Fauser, B.C.J.M.; Tarlatzis, B.C.; Rebar, R.W.; Legro, R.S.; Balen, A.H.; Lobo, R.; Carmina, E.; Chang, J.; Yildiz, B.O.; Laven, J.S.; et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil. Steril. 2012, 97, 28–38.e25. [Google Scholar] [PubMed]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar]
- Prati, A.; Genazzani, A.R.; Genazzani, A.D. Pathogenesis of PCOS: From Metabolic and Neuroendocrine Implications to the Choice of the Therapeutic Strategy. In Clinical Management of Infertility; Genazzani, A.R., Ibáñez, L., Milewicz, A., Shah, D., Eds.; Impact of Polycystic Ovary, Metabolic Syndrome and Obesity on Women Health: Volume 8: Frontiers in Gynecological Endocrinology; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 43–66. [Google Scholar]
- Srikanthan, K.; Feyh, A.; Visweshwar, H.; Shapiro, J.I.; Sodhi, K. Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population. Int. J. Med. Sci. 2016, 13, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Martínez, P.; Mikhailidis, D.P.; Athyros, V.G.; Bullo, M.; Couture, P.; Covas, M.I.; de Koning, L.; Delgado-Lista, J.; Díaz-López, A.; Drevon, C.A.; et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: An international panel recommendation. Nutr. Rev. 2017, 75, 307–326. [Google Scholar]
- Polyzos, S.A.; Goulis, D.G.; Kountouras, J.; Mintziori, G.; Chatzis, P.; Papadakis, E.; Katsikis, I.; Panidis, D. Non-alcoholic fatty liver disease in women with polycystic ovary syndrome: Assessment of non-invasive indices predicting hepatic steatosis and fibrosis. Hormones 2014, 13, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Utzschneider, K.M.; Kahn, S.E.; Polidori, D.C. Hepatic Insulin Extraction in NAFLD Is Related to Insulin Resistance Rather Than Liver Fat Content. J. Clin. Endocrinol. Metab. 2019, 104, 1855–1865. [Google Scholar] [CrossRef] [Green Version]
- Fosam, A.; Sikder, S.; Abel, B.S.; Tella, S.H.; Walter, M.F.; Mari, A.; Muniyappa, R. Reduced Insulin Clearance and Insulin-Degrading Enzyme Activity Contribute to Hyperinsulinemia in African Americans. J. Clin. Endocrinol. Metab. 2020, 105, E1835–E1846. [Google Scholar] [CrossRef] [Green Version]
- Genazzani, A.D.; Prati, A.; Genazzani, A.R.; Battipaglia, C.; Simoncini, T.; Szeliga, A.; Podfigurnaet, A.; Meczekalski, B. Synergistic effects of the integrative administration of acetyl-L-carnitine, L-carnitine, L-arginine and N-acetyl-cysteine on metabolic dynamics and on hepatic insulin extraction in overweight/obese patients with PCOS. Gynecol. Reprod. Endocrinol. Metab. 2020, 1, 56–63. [Google Scholar]
- Finucane, F.M.; Sharp, S.J.; Hatunic, M.; Sleigh, A.; De Lucia Rolfe, E.; Aihie Sayer, A.; Cooper, C.; Griffin, S.J.; Wareham, N.J. Liver fat accumulation is associated with reduced hepatic insulin extraction and beta cell dysfunction in healthy older individuals. Diabetol. Metab. Syndr. 2014, 26, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genazzani, A.D.; Battipaglia, C.; Petrillo, T.; Alberti, C.; Patrizi, B.; Tomatis, V.; Simoncini, T.; Genazzani, A.R. HIE (hepatic insulin extraction) index in overweight/obese. PCOS patients with or without familial diabetes. Gynecol. Reprod. Endocrinol. Metab. 2022, 3, 57–68. [Google Scholar]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madeira, I.R.; Carvalho, C.N.M.; Gazolla, F.M.; de Matos, H.J.; Borges, M.A.; Bordallo, M.A.N. Cut-off point for Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index established from Receiver Operating Characteristic (ROC) curve in the detection of metabolic syndrome in overweight pre-pubertal children. Arq. Bras. Endocrinol. Metabol. 2008, 52, 1466–1473. [Google Scholar] [CrossRef] [Green Version]
- Genazzani, A.D.; Prati, A.; Santagni, S.; Ricchieri, F.; Chierchia, E.; Rattighieri, E.; Campedelli, A.; Simoncini, T.; Artini, P.G. Differential insulin response to myo-inositol administration in obese polycystic ovary syndrome patients. Gynecol. Endocrinol. 2012, 28, 969–973. [Google Scholar] [CrossRef]
- Lunger, F.; Wildt, L.; Seeber, B. Accurate screening for insulin resistance in PCOS women using fasting insulin concentrations. Gynecol. Endocrinol. 2013, 29, 541–544. [Google Scholar] [CrossRef]
- Genazzani, A.D.; Petraglia, F.; Fabbri, G.; Monzani, A.; Montanini, V.; Genazzani, A.R. Evidence of luteinizing hormone secretion in hypothalamic amenorrhea associated with weight loss. Fertil. Steril. 1990, 54, 222–226. [Google Scholar] [CrossRef]
- Polonsky, K.; Jaspan, J.; Pugh, W.; Cohen, D.; Schneider, M.; Schwartz, T.; Moossa, A.R.; Tager, H.; Rubenstein, A.H. Metabolism of C-peptide in the dog. In vivo demonstration of the absence of hepatic extraction. J. Clin. Investig. 1983, 72, 1114–1123. [Google Scholar] [CrossRef] [Green Version]
- Tura, A.; Ludvik, B.; Nolan, J.J.; Pacini, G.; Thomaseth, K. Insulin and C-peptide secretion and kinetics in humans: Direct and model-based measurements during OGTT. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E966–E974. [Google Scholar] [CrossRef] [Green Version]
- Faber, O.K.; Hagen, C.; Binder, C.; Markussen, J.; Naithani, V.K.; Blix, P.M.; Kuzuya, H.; Horwitz, D.L.; Rubenstein, A.H.; Rossing, N. Kinetics of human connecting peptide in normal and diabetic subjects. J. Clin. Invest. 1978, 62, 197–203. [Google Scholar] [CrossRef]
- Grodsky, G.M. A new phase of insulin secretion. How will it contribute to our understanding of beta-cell function? Diabetes 1989, 38, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Leissring, M.A.; González-Casimiro, C.M.; Merino, B.; Suire, C.N.; Perdomo, G. Targeting Insulin-Degrading Enzyme in Insulin Clearance. Int. J. Mol. Sci. 2021, 22, 2235. [Google Scholar] [CrossRef] [PubMed]
Glucose mg/dL | Insulin µUI/mL | Total Chol mg/dL | HDL mg/dL | LDL mg/dL | Trigliceride mg/dL | AST U/L | ALT U/L | HOMA Index | C-Peptide mg/dL | BMI | HIE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
All PCOS n = 84 | 88.0 ± 1.4 | 13.0 ± 0.9 | 176.6 ± 3.3 | 50.3 ± 1.4 | 129.4 ± 5.8 | 101.9 ± 5.5 | 21.9 ± 0.6 | 23.2 ± 1.2 | 3.0 ± 0.3 | 2.2 ± 0.1 | 32.8 ± 1.1 | 5.6 ± 0.2 |
Familial diabetes (n = 44) | 89.8 ± 2.5 | 14.5 ± 1.5 | 179.5 ± 4.3 | 52.6 ± 2.0 | 129.5 ± 6.3 | 101.3 ± 7.8 | 23.7 ± 1.9 | 27.5 ± 1.9 | 3.5 ± 0.5 | 2.3 ± 0.1 | 33.5 ± 1.3 | 5.9 ± 0.3 |
p vs. no familial diabetes | 0.05 | 0.003 | 0.0001 | 0.05 | 0.02 | |||||||
No familial diabetes (n = 40) | 85.8 ± 1.3 | 10.9 ± 0.9 | 172.7 ± 5.2 | 47.9 ± 1.9 | 127.9 ± 6.2 | 100.6 ± 7.8 | 19.9 ± 0.7 | 18.5 ± 0.9 | 2.02 ± 0.1 | 2.1 ± 0.1 | 31.7 ± 2.0 | 5.0 ± 0.2 |
Glucose mg/dL | Insulin µUI/mL | Total Chol mg/dL | HDL mg/dL | LDL mg/dL | Trigliceride mg/dL | AST U/L | ALT U/L | HOMA Index | C-Peptide mg/dL | BMI | HIE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Familial diabetes (n = 44) | ||||||||||||
Ins >12 µIU/mL (n = 23) | 94.9 ± 4.4 | 21.4 ± 2.1 | 167.3 ± 5.5 | 46.7 ± 2.9 | 123.2 ± 10.5 | 112.3 ± 12.4 | 23.2 ± 1.3 | 29.2 ± 2.8 | 5.3 ± 0.9 | 2.9 ± 0.2 | 36.5 ± 1.8 | 7.2 ± 0.3 |
p vs. Ins ≤ 12 µIU/mL | 0.03 | 0.000004 | 0.005 | 0.006 | 0.01 | 0.0004 | 0.0009 | 0.03 | 0.000004 | |||
p vs. No Fam Diab Ins > 12 µIU/mL | 0.05 | 0.03 | 0.05 | |||||||||
Ins≤ 12 µIU/mL (n = 21) | 84.3 ± 1.8 | 7.9 ± 0.5 | 190.6 ± 5.9 | 57.7 ± 2.5 | 135.7 ± 7.7 | 89.6 ± 9.4 | 24.3 ± 1.5 | 25.8 ± 2.7 | 1.6 ± 0.1 | 1.8 ± 0.1 | 30.8 ± 1.8 | 4.7 ± 0.3 |
p vs. No Fam Diab Ins ≤ 12 µIU/mL | 0.03 | 0.03 | 0.006 | |||||||||
No familial diabetes (n = 40) | ||||||||||||
Ins >12 µIU/mL (n = 11) | 90.7 ± 3.6 | 17.2 ± 2.0 | 170.0 ± 15.5 | 41.8 ± 3.9 | 115.0 ± 19.3 | 127.2 ± 13.9 | 17.8 ± 1.4 | 19.0 ± 1.7 | 3.8 ± 0.5 | 2.8 ± 0.2 | 36.1 ± 5.4 | 5.9 ± 0.3 |
p vs. Ins ≤ 12 µIU/mL | 0.00000002 | 0.04 | 0.0000005 | 0.000004 | 0.04 | 0.001 | ||||||
Ins≤ 12 µIU/mL (n = 29) | 84.6 ± 1.4 | 8.1 ± 0.5 | 176.8 ± 5.4 | 50.5 ± 2.2 | 129.4 ± 7.0 | 93.9 ± 9.0 | 20.4 ± 1.1 | 18.1 ± 1.2 | 1.6 ± 0.1 | 1.7 ± 0.1 | 29.6 ± 1.9 | 4.6 ± 0.2 |
Baseline Insulin >12 μU/mL | Baseline Insulin ≤12 μU/mL | Totals | |
---|---|---|---|
PCOS with familial diabetes | 23 * | 21 | 44 |
PCOS without familial diabetes | 11 | 29 | 40 |
Totals | 34 | 50 | 84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genazzani, A.D.; Battipaglia, C.; Semprini, E.; Arnesano, M.; Ambrosetti, F.; Sponzilli, A.; Tomatis, V.; Petrillo, T. Familial Diabetes in Obese PCOS Predisposes Individuals to Compensatory Hyperinsulinemia and Insulin Resistance (IR) Also for Reduced Hepatic Insulin Extraction (HIE). Endocrines 2022, 3, 296-302. https://doi.org/10.3390/endocrines3020024
Genazzani AD, Battipaglia C, Semprini E, Arnesano M, Ambrosetti F, Sponzilli A, Tomatis V, Petrillo T. Familial Diabetes in Obese PCOS Predisposes Individuals to Compensatory Hyperinsulinemia and Insulin Resistance (IR) Also for Reduced Hepatic Insulin Extraction (HIE). Endocrines. 2022; 3(2):296-302. https://doi.org/10.3390/endocrines3020024
Chicago/Turabian StyleGenazzani, Alessandro D., Christian Battipaglia, Elisa Semprini, Melania Arnesano, Fedora Ambrosetti, Alessandra Sponzilli, Veronica Tomatis, and Tabatha Petrillo. 2022. "Familial Diabetes in Obese PCOS Predisposes Individuals to Compensatory Hyperinsulinemia and Insulin Resistance (IR) Also for Reduced Hepatic Insulin Extraction (HIE)" Endocrines 3, no. 2: 296-302. https://doi.org/10.3390/endocrines3020024
APA StyleGenazzani, A. D., Battipaglia, C., Semprini, E., Arnesano, M., Ambrosetti, F., Sponzilli, A., Tomatis, V., & Petrillo, T. (2022). Familial Diabetes in Obese PCOS Predisposes Individuals to Compensatory Hyperinsulinemia and Insulin Resistance (IR) Also for Reduced Hepatic Insulin Extraction (HIE). Endocrines, 3(2), 296-302. https://doi.org/10.3390/endocrines3020024