Corrosion-Resisting Nanocarbon Nanocomposites for Aerospace Application: An Up-to-Date Account
Abstract
:1. Introduction
2. Polymeric Nanocomposites for Corrosion Resistance
3. Anticorrosion Polymer/Nanocarbon Nanocomposites
4. Corrosion-Resisting Polymer/Nanocarbon Nanomaterials for Aerospace
5. Prospects of Corrosion-Resisting Coatings
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thakur, A.; Kaya, S.; Kumar, A. Recent Trends in the Characterization and Application Progress of Nano-Modified Coatings in Corrosion Mitigation of Metals and Alloys. Appl. Sci. 2023, 13, 730. [Google Scholar] [CrossRef]
- Bikiaris, D.N. Nanocomposites with Different Types of Nanofillers and Advanced Properties for Several Applications. Appl. Nano 2022, 3, 160–162. [Google Scholar] [CrossRef]
- Milana, E.; Santaniello, T.; Azzini, P.; Migliorini, L.; Milani, P. Fabrication of High-Aspect-Ratio Cylindrical Micro-Structures Based on Electroactive Ionogel/Gold Nanocomposite. Appl. Nano 2020, 1, 59–69. [Google Scholar] [CrossRef]
- Kausar, A. Poly (methyl methacrylate) nanocomposite reinforced with graphene, graphene oxide, and graphite: A review. Polym.-Plast. Technol. Mater. 2019, 58, 821–842. [Google Scholar] [CrossRef]
- Papanicolaou, G.C.; Kontaxis, L.C.; Portan, D.V.; Petropoulos, G.N.; Valeriou, E.; Alexandropoulos, D. Mechanical Performance Enhancement of Aluminum Single-Lap Adhesive Joints Due to Organized Alumina Nanotubes Layer Formation on the Aluminum Adherends. Appl. Nano 2021, 2, 206–221. [Google Scholar] [CrossRef]
- Dagdag, O.; Berisha, A.; Mehmeti, V.; Haldhar, R.; Berdimurodov, E.; Hamed, O.; Jodeh, S.; Lgaz, H.; Sherif, E.-S.M.; Ebenso, E.E. Epoxy coating as effective anti-corrosive polymeric material for aluminum alloys: Formulation, electrochemical and computational approaches. J. Mol. Liq. 2022, 346, 117886. [Google Scholar] [CrossRef]
- Nazari, M.H.; Zhang, Y.; Mahmoodi, A.; Xu, G.; Yu, J.; Wu, J.; Shi, X. Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances. Prog. Org. Coat. 2022, 162, 106573. [Google Scholar] [CrossRef]
- Pourhashem, S.; Saba, F.; Duan, J.; Rashidi, A.; Guan, F.; Nezhad, E.G.; Hou, B. Polymer/Inorganic nanocomposite coatings with superior corrosion protection performance: A review. J. Ind. Eng. Chem. 2020, 88, 29–57. [Google Scholar] [CrossRef]
- Bakshi, M.I.; Ahmad, S. In-situ synthesis of synergistically active ceria doped polypyrrole oleo-polyesteramide hybrid nanocomposite coatings: Corrosion protection and flame retardancy behaviour. Prog. Org. Coat. 2020, 147, 105778. [Google Scholar] [CrossRef]
- Jeong, N.; Jwa, E.; Kim, C.; Choi, J.Y.; Nam, J.-Y.; Hwang, K.S.; Han, J.-H.; Kim, H.-K.; Park, S.-C.; Seo, Y.S. One-pot large-area synthesis of graphitic filamentous nanocarbon-aligned carbon thin layer/carbon nanotube forest hybrid thin films and their corrosion behaviors in simulated seawater condition. Chem. Eng. J. 2017, 314, 69–79. [Google Scholar] [CrossRef]
- Cui, Y.; Kundalwal, S.; Kumar, S. Gas barrier performance of graphene/polymer nanocomposites. Carbon 2015, 98, 313–333. [Google Scholar] [CrossRef]
- Krebs, F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [Google Scholar] [CrossRef]
- Tareq, S. Fabrication and Characterisation of Polymeric Nano-Composites. Master’s Thesis, Western Sydney University, Sydney NSW, Australia, 2019. [Google Scholar]
- Balakrishnan, P.; John, M.J.; Pothen, L.; Sreekala, M.; Thomas, S. Natural fibre and polymer matrix composites and their applications in aerospace engineering. In Advanced Composite Materials for Aerospace Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 365–383. [Google Scholar]
- Kausar, A. Applications of polymer/graphene nanocomposite membranes: A review. Mater. Res. Innov. 2019, 23, 276–287. [Google Scholar] [CrossRef]
- Zhu, C.; Wu, J.; Yan, J.; Liu, X. Advanced Fiber Materials for Wearable Electronics. Adv. Fiber Mater. 2022, 5, 12–35. [Google Scholar] [CrossRef]
- Habibpour, S.; Um, J.G.; Jun, Y.-S.; Bhargava, P.; Park, C.B.; Yu, A. Structural Impact of Graphene Nanoribbon on Mechanical Properties and Anti-corrosion Performance of Polyurethane Nanocomposites. Chem. Eng. J. 2021, 405, 126858. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F. Fundamentals of Electrical Conductivity in Polymers. In Multifunctional Epoxy Resins; Springer: Berlin/Heidelberg, Germany, 2023; pp. 327–364. [Google Scholar]
- Yu, J.; Liu, Y.; Wang, H.; Yan, Q.; Luo, J. Insight into the corrosion inhibition of the iron anode with electro-deposited polyaniline during the electrocoagulation treatment process of electroplating wastewater. Environ. Sci. Water Res. Technol. 2022, 9, 406–418. [Google Scholar] [CrossRef]
- Cho, L.Y.; Guiotti, L.G.; Liu, A.S. Corrosion performance of polypyrrole-bilayer coating on carbon steel. J. Mater. Sci. 2023, 58, 1436–1451. [Google Scholar] [CrossRef]
- Hassan, A.; Ismail, M.; Reshak, A.H.; Zada, Z.; Khan, A.A.; Arif, M.; Siraj, K.; Zada, S.; Murtaza, G.; Ramli, M.M. Effect of heteroatoms on structural, electronic and spectroscopic properties of polyfuran, polythiophene and polypyrrole: A hybrid DFT approach. J. Mol. Struct. 2023, 1274, 134484. [Google Scholar] [CrossRef]
- Ai, Y.-F.; Xia, L.; Pang, F.-Q.; Xu, Y.-L.; Zhao, H.-B.; Jian, R.-K. Mechanically strong and flame-retardant epoxy resins with anti-corrosion performance. Compos. Part B Eng. 2020, 193, 108019. [Google Scholar] [CrossRef]
- Nurhamiyah, Y.; Amir, A.; Finnegan, M.; Themistou, E.; Edirisinghe, M.; Chen, B. Wholly biobased, highly stretchable, hydrophobic, and self-healing thermoplastic elastomer. ACS Appl. Mater. Interfaces 2021, 13, 6720–6730. [Google Scholar] [CrossRef]
- Kausar, A. Thermally conducting polymer/nanocarbon and polymer/inorganic nanoparticle nanocomposite: A review. Polym. Technol. Mater. 2020, 59, 895–909. [Google Scholar] [CrossRef]
- Anjana, P.; Bindhu, M.; Rakhi, R. Green synthesized gold nanoparticle dispersed porous carbon composites for electrochemical energy storage. Mater. Sci. Energy Technol. 2019, 2, 389–395. [Google Scholar] [CrossRef]
- Umoren, S.A.; Solomon, M.M. Protective polymeric films for industrial substrates: A critical review on past and recent applications with conducting polymers and polymer composites/nanocomposites. Prog. Mater. Sci. 2019, 104, 380–450. [Google Scholar] [CrossRef]
- Yang, W.; Feng, W.; Liao, Z.; Yang, Y.; Miao, G.; Yu, B.; Pei, X. Protection of mild steel with molecular engineered epoxy nanocomposite coatings containing corrosion inhibitor functionalized nanoparticles. Surf. Coat. Technol. 2020, 406, 126639. [Google Scholar] [CrossRef]
- Guo, X.-J.; Zhang, D.; Xue, C.-H.; Liu, B.-Y.; Huang, M.-C.; Wang, H.-D.; Wang, X.; Deng, F.-Q.; Pu, Y.-P.; An, Q.-F. Scalable and Mechanically Durable Superhydrophobic Coating of SiO2/Polydimethylsiloxane/Epoxy Nanocomposite. ACS Appl. Mater. Interfaces 2023, 15, 4612–4622. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, X.; Gu, H.; Wang, Y.; Yan, X.; Ding, D.; Long, J.; Tadakamalla, S.; Wang, Q.; Khan, M.A. Reinforced magnetic epoxy nanocomposites with conductive polypyrrole nanocoating on nanomagnetite as a coupling agent. RSC Adv. 2014, 4, 36560–36572. [Google Scholar] [CrossRef]
- He, Z.; Lin, H.; Zhang, X.; Chen, Y.; Bai, W.; Lin, Y.; Jian, R.; Xu, Y. Self-healing epoxy composite coating based on polypyrrole@MOF nanoparticles for the long-efficiency corrosion protection on steels. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 657, 130601. [Google Scholar] [CrossRef]
- Dennis, R.V.; Patil, V.; Andrews, J.L.; Aldinger, J.P.; Yadav, G.D.; Banerjee, S. Hybrid nanostructured coatings for corrosion protection of base metals: A sustainability perspective. Mater. Res. Express 2015, 2, 032001. [Google Scholar] [CrossRef]
- Ramon, E.; Sguazzo, C.; Moreira, P.M.G.P. A Review of Recent Research on Bio-Based Epoxy Systems for Engineering Applications and Potentialities in the Aviation Sector. Aerospace 2018, 5, 110. [Google Scholar] [CrossRef]
- Hamerton, I.; Kratz, J. The use of thermosets in modern aerospace applications. In Thermosets; Elsevier: Amsterdam, The Netherlands, 2018; pp. 303–340. [Google Scholar]
- Ahmadi, Z. Epoxy in nanotechnology: A short review. Prog. Org. Coat. 2019, 132, 445–448. [Google Scholar] [CrossRef]
- Kugler, S.; Ossowicz-Rupniewska, P.; Wierzbicka, E.; Łopiński, J. Anhydride-Cured Epoxy Powder Coatings from Natural-Origin Resins, Hardeners, and Fillers. Coatings 2021, 11, 531. [Google Scholar] [CrossRef]
- Ogbonna, V.; Popoola, A.; Popoola, O.; Adeosun, S. A review on the recent advances on improving the properties of epoxy nanocomposites for thermal, mechanical, and tribological applications: Challenges and recommendations. Polym.-Plast. Technol. Mater. 2022, 61, 176–195. [Google Scholar] [CrossRef]
- Nikafshar, S.; McCracken, J.; Dunne, K.; Nejad, M. Improving UV-Stability of epoxy coating using encapsulated halloysite nanotubes with organic UV-Stabilizers and lignin. Prog. Org. Coat. 2020, 158, 105843. [Google Scholar]
- Frigione, M.; Lettieri, M. Recent Advances and Trends of Nanofilled/Nanostructured Epoxies. Materials 2020, 13, 3415. [Google Scholar] [CrossRef]
- Ghahremani, P.; Mostafatabar, A.H.; Bahlakeh, G.; Ramezanzadeh, B. Rational design of a novel multi-functional carbon-based nano-carrier based on multi-walled-CNT-oxide/polydopamine/chitosan for epoxy composite with robust pH-sensitive active anti-corrosion properties. Carbon 2022, 189, 113–141. [Google Scholar] [CrossRef]
- Ji, X.; Seif, A.; Duan, J.; Rashidi, A.; Zhou, Z.; Pourhashem, S.; Mirzaee, M.; Zhai, X.; Zhao, X.; Hou, B. Experimental and DFT studies on corrosion protection performance of epoxy/graphene quantum dots@ TiO2 nanotubes coatings. Constr. Build. Mater. 2022, 322, 126501. [Google Scholar] [CrossRef]
- Haeri, Z.; Ramezanzadeh, B.; Ramezanzadeh, M. Recent progress on the metal-organic frameworks decorated graphene oxide (MOFs-GO) nano-building application for epoxy coating mechanical-thermal/flame-retardant and anti-corrosion features improvement. Prog. Org. Coat. 2022, 163, 106645. [Google Scholar] [CrossRef]
- Auda AbdulAmeer, S.; Thabit, R.S.; Hadi, M.; Taha Ibrahim, I.; Mahmood Saeed, S.; Ali Kadhim, A.; Abbas Sahib, A. Modeling the Kinetics of Degradation of Epoxy Nanocomposites in the Presence of Modified Nanodiamonds with Carboxyl. J. Nanostructures 2022, 12, 975–982. [Google Scholar]
- Morimune-Moriya, S. Polymer/nanocarbon nanocomposites with enhanced properties. Polym. J. 2022, 54, 977–984. [Google Scholar] [CrossRef]
- Kooshksara, M.M.; Mohammadi, S. Investigation of the in-situ solvothermal reduction of multi-layered Graphene oxide in epoxy coating by acetonitrile on improving the hydrophobicity and corrosion resistance. Prog. Org. Coat. 2021, 159, 106432. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Futaba, D.N.; Chen, G.; Chen, C.; Zhou, K.; Zhang, Q.; Li, M.; Ye, Z.; Xu, M. Structural Design and Fabrication of Multifunctional Nanocarbon Materials for Extreme Environmental Applications. Adv. Mater. 2022, 34, 2201046. [Google Scholar] [CrossRef]
- Huang, X.; Zhi, C.; Jiang, P. Toward Effective Synergetic Effects from Graphene Nanoplatelets and Carbon Nanotubes on Thermal Conductivity of Ultrahigh Volume Fraction Nanocarbon Epoxy Composites. J. Phys. Chem. C 2012, 116, 23812–23820. [Google Scholar] [CrossRef]
- Jain, N.; Gupta, E.; Kanu, N.J. Plethora of Carbon nanotubes applications in various fields—A state-of-the-art-review. Smart Sci. 2022, 10, 1–24. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, J.; Ming, W.; He, W.; Zhang, G.; Zhang, H.; Cao, Y.; Jiang, Z. Non-traditional processing of carbon nanotubes: A review. Alex. Eng. J. 2022, 61, 597–617. [Google Scholar] [CrossRef]
- Yang, H.; Duan, L.; Zhang, P.; Xu, G.; Cui, J.; Lv, J.; Sun, W.; Li, B.; Wang, D.; Wu, Y. Corrosion resistance of functionalized carbon nanotubes enhanced epoxy coatings on sintered NdFeB magnets. J. Coat. Technol. Res. 2022, 19, 1317–1329. [Google Scholar] [CrossRef]
- Lorwanishpaisarn, N.; Srikhao, N.; Jetsrisuparb, K.; Knijnenburg, J.T.N.; Theerakulpisut, S.; Okhawilai, M.; Kasemsiri, P. Self-healing Ability of Epoxy Vitrimer Nanocomposites Containing Bio-Based Curing Agents and Carbon Nanotubes for Corrosion Protection. J. Polym. Environ. 2022, 30, 472–482. [Google Scholar] [CrossRef]
- Wu, Y.; Weil, T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. Adv. Sci. 2022, 9, 2200059. [Google Scholar] [CrossRef]
- Rahmani, P.; Shojaei, A.; Tavandashti, N.P. Nanodiamond loaded with corrosion inhibitor as efficient nanocarrier to improve anticorrosion behavior of epoxy coating. J. Ind. Eng. Chem. 2020, 83, 153–163. [Google Scholar] [CrossRef]
- Mohammadkhani, R.; Shojaei, A.; Rahmani, P.; Tavandashti, N.P.; Amouzegar, M. Synthesis and characterization of polyaniline/nanodiamond hybrid nanostructures with various morphologies to enhance the corrosion protection performance of epoxy coating. Diam. Relat. Mater. 2021, 120, 108672. [Google Scholar] [CrossRef]
- Seabra, A.B.; Paula, A.J.; de Lima, R.; Alves, O.L.; Durán, N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 2014, 27, 159–168. [Google Scholar] [CrossRef]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-Like Two-Dimensional Materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 2016, 10, 227–238. [Google Scholar] [CrossRef]
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25. [Google Scholar] [CrossRef]
- Razaq, A.; Bibi, F.; Zheng, X.; Papadakis, R.; Jafri, S.H.M.; Li, H. Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications. Materials 2022, 15, 1012. [Google Scholar] [CrossRef]
- Li, F.; Long, L.; Weng, Y. A Review on the Contemporary Development of Composite Materials Comprising Graphene/Graphene Derivatives. Adv. Mater. Sci. Eng. 2020, 2020, 1915641. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- Chen, C.; Qiu, S.; Cui, M.; Qin, S.; Yan, G.; Zhao, H.; Wang, L.; Xue, Q. Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 2017, 114, 356–366. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Zhang, X.; Zhao, Z.; Zhu, Y. A multifunctional super-hydrophobic coating based on PDA modified MoS2 with anti-corrosion and wear resistance. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 239–247. [Google Scholar] [CrossRef]
- Yu, B.; Shi, Y.Q.; Yuan, B.H.; Qiu, S.L.; Xing, W.Y.; Hu, W.Z.; Song, L.; Lo, S.M.; Hu, Y. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J. Mater. Chem. A 2015, 3, 8034–8044. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Wu, Y.-Y.; Deng, X.; Zheng, Z. The effect of graphene oxide on the mechanical properties, impermeability and corrosion resistance of cement mortar containing mineral admixtures. Constr. Build. Mater. 2021, 288, 123059. [Google Scholar] [CrossRef]
- Prasad, N.E.; Wanhill, R.J. Aerospace Materials and Material Technologies; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Vinokurova, I.; Khlopovskikh, E.; Safonova, L.; Zvyagina, L. Study of the Features of Heat and Mass Transfer in the Interelectrode Space During Electrochemical Processing of Metals for the Aerospace Industry; AIP Publishing LLC: Melville, NY, USA, 2022; p. 050053. [Google Scholar]
- Arrigoni, M. Metallic Materials and Their Applications in Aerospace and Advanced Technologies; MDPI: Basel, Switzerland, 2022; p. 226. [Google Scholar]
- El-Shamy, A.M.; Mouneir, S.M. Medicinal Materials as Eco-friendly Corrosion Inhibitors for Industrial Applications: A Review. J. Bio-Tribo-Corrosion 2023, 9, 1–40. [Google Scholar] [CrossRef]
- Sofi, A.; Jeffrey, J.; Rathor, A.S. Chemical property and characteristics of polymer. In Materials for Lightweight Constructions; CRC Press: Boca Raton, FL, USA, 2023; pp. 61–81. [Google Scholar]
- Lan, J.; Wang, B.; Bo, C.; Gong, B.; Ou, J. Progress on fabrication and application of activated carbon sphere in recent decade. J. Ind. Eng. Chem. 2023, 120, 47–72. [Google Scholar] [CrossRef]
- Kausar, A.; Bocchetta, P. Polymer/Graphene Nanocomposite Membranes: Status and Emerging Prospects. J. Compos. Sci. 2022, 6, 76. [Google Scholar] [CrossRef]
- Stewart, M.G.; Bastidas-Arteaga, E. Corrosion of concrete and steel structures in a changing climate. In Climate Adaptation Engineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 99–125. [Google Scholar]
- Wong, R. Design, Build and Certification of Composite Airplane Structure. In Design, Manufacturing & Application of Composites; CRC Press: Boca Raton, FL, USA, 2020; pp. 717–725. [Google Scholar]
- Kumar, C.V.; Rajyalakshmi, G.; Kartha, J. Insights on Anti-corrosion Coating of Magnesium Alloy: A Review. J. Bio- Tribo-Corrosion 2023, 9, 1–21. [Google Scholar]
- Wei, J.; Li, B.; Jing, L.; Tian, N.; Zhao, X.; Zhang, J. Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating. Chem. Eng. J. 2020, 390, 124562. [Google Scholar] [CrossRef]
- Cui, M.; Wang, B.; Wang, Z. Nature-inspired strategy for anticorrosion. Adv. Eng. Mater. 2019, 21, 1801379. [Google Scholar] [CrossRef]
- Tenjimbayashi, M.; Nishioka, S.; Kobayashi, Y.; Kawase, K.; Li, J.; Abe, J.; Shiratori, S. A Lubricant-Sandwiched Coating with Long-Term Stable Anticorrosion Performance. Langmuir 2018, 34, 1386–1393. [Google Scholar] [CrossRef]
- Al-mashhadani, M.; Ahmed, W.A.; Abdallh, M.; Hussain, Z.; Yousif, E. Eco-friendly green corrosion inhibitors in overview. Res. J. Adv. Sci. 2020, 1, 7–16. [Google Scholar]
- Nematollahzadeh, A.; Seraj, S.; Mirzayi, B. Catecholamine coated maghemite nanoparticles for the environmental remediation: Hexavalent chromium ions removal. Chem. Eng. J. 2015, 277, 21–29. [Google Scholar] [CrossRef]
- Anjum, M.J.; Ali, H.; Khan, W.Q.; Zhao, J.; Yasin, G. Metal/metal oxide nanoparticles as corrosion inhibitors. In Corrosion Protection at the Nanoscale; Elsevier: Amsterdam, The Netherlands, 2020; pp. 181–201. [Google Scholar]
- Wulan, P.P.; Wijardono, S.B. Finding an Optimum Period of Oxidative Heat Treatment on SS 316 Catalyst for Nanocarbon Production from LDPE Plastic Waste. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 552. [Google Scholar] [CrossRef]
- Williams, J.C.; Starke, E.A., Jr. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Pittman, E.; Koumlis, S.; Aung, H.N.; Bellafatto, A.; Lamberson, L. Rate-Dependent Fracture Behavior of Aerospace Epoxies: PR-520 and 3502. J. Aerosp. Eng. 2022, 35, 04021100. [Google Scholar] [CrossRef]
- Ramachandran, K.; Boopalan, V.; Bear, J.C.; Subramani, R. Multi-walled carbon nanotubes (MWCNTs)-reinforced ceramic nanocomposites for aerospace applications: A review. J. Mater. Sci. 2021, 57, 3923–3953. [Google Scholar] [CrossRef]
- Siochi, E.J.; Harrison, J.S. Structural nanocomposites for aerospace applications. MRS Bull. 2015, 40, 829–835. [Google Scholar] [CrossRef]
- Kaiser, A.L.; Acauan, L.; Wardle, B.L. Process-Structure-Property Relations in Dense Aligned Carbon Nanotube/Aerospace-Grade Epoxy Nanocomposites; American Institute of Aeronautics and Astronautics: Lowell, MA, USA, 2022; p. 1095. [Google Scholar]
- Ebrahimzad, P.; Ghasempar, M.; Balali, M. Friction Stir Processing of Aerospace Aluminum Alloy by Addition of Carbon Nano Tube. Trans. Indian Inst. Met. 2017, 70, 2241–2253. [Google Scholar] [CrossRef]
- Pathak, S.; Saha, G.C.; Hadi, M.B.A.; Jain, N.K. Engineered Nanomaterials for Aviation Industry in COVID-19 Context: A Time-Sensitive Review. Coatings 2021, 11, 382. [Google Scholar] [CrossRef]
- Asmatulu, R. Nanocoatings for corrosion protection of aerospace alloys. In Corrosion Protection and Control Using Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 357–374. [Google Scholar]
- Tajuddin, M.H.; Yusof, N.; Abdullah, N.; Abidin, M.N.Z.; Salleh, W.N.W.; Ismail, A.F.; Matsuura, T.; Hairom, N.H.H.; Misdan, N. Incorporation of layered double hydroxide nanofillers in polyamide nanofiltration membrane for high performance of salts rejections. J. Taiwan Inst. Chem. Eng. 2019, 97, 1–11. [Google Scholar] [CrossRef]
- Jakubinek, M.B.; Ashrafi, B.; Zhang, Y.; Martinez-Rubi, Y.; Kingston, C.T.; Johnston, A.; Simard, B. Single-walled carbon nanotube–epoxy composites for structural and conductive aerospace adhesives. Compos. Part B Eng. 2015, 69, 87–93. [Google Scholar] [CrossRef]
- Krishna, A.; Aravinda, L.; Murugan, A.; Kumar, N.S.; Sankar, M.R.; Reddy, K.N.; Balashanmugam, N. A study on wafer scalable, industrially applicable CNT based nanocomposites of Al-CNT, Cu-CNT, Ti-CNT, and Ni-CNT as thermal interface materials synthesised by thin film techniques. Surf. Coat. Technol. 2021, 127926. [Google Scholar] [CrossRef]
- Jyotheender, K.S.; Gupta, A.; Srivastava, C. Grain boundary engineering in Ni-carbon nanotube composite coatings and its effect on the corrosion behaviour of the coatings. Materialia 2020, 9, 100617. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, R.; Dong, X.; Wu, L.; Zhang, X. High Strength Conductive Polyamide 6 Nanocomposites Reinforced by Prebuilt Three-Dimensional Carbon Nanotube Networks. ACS Appl. Mater. Interfaces 2018, 10, 28103–28111. [Google Scholar] [CrossRef]
- Verma, P.; Anoop, S.; Rao, V.S.; Sharma, A.; Rani, R.U. Multiwalled carbon nanotube-poly vinyl alcohol nanocomposite multifunctional coatings on aerospace alloys. Mater. Today Proc. 2018, 5, 21205–21216. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, S.; Hu, J.; Lin, T. Formation mechanism and corrosion resistance of the hydrophobic coating on anodized magnesium. Corros. Sci. 2016, 111, 334–343. [Google Scholar] [CrossRef]
- Dassios, K.G.; Galiotis, C. Polymer–nanotube interaction in MWCNT/poly (vinyl alcohol) composite mats. Carbon 2012, 50, 4291–4294. [Google Scholar] [CrossRef]
- Mallakpour, S.; Abdolmaleki, A.; Borandeh, S. l-Phenylalanine amino acid functionalized multi walled carbon nanotube (MWCNT) as a reinforced filler for improving mechanical and morphological properties of poly (vinyl alcohol)/MWCNT composite. Prog. Org. Coat. 2014, 77, 1966–1971. [Google Scholar] [CrossRef]
- Kausar, A. Advances in condensation polymer containing zero-dimensional nanocarbon reinforcement—Fullerene, carbon nano-onion, and nanodiamond. Polym.-Plast. Technol. Mater. 2021, 60, 695–713. [Google Scholar] [CrossRef]
- Kausar, A. Nanocarbon and macrocarbonaceous filler–reinforced epoxy/polyamide: A review. J. Thermoplast. Compos. Mater. 2022, 35, 2620–2640. [Google Scholar] [CrossRef]
- Haleem, Y.A.; Liu, D.; Chen, W.; Wang, C.; Hong, C.; He, Z.; Liu, J.; Song, P.; Yu, S.; Song, L. Surface functionalization and structure characterizations of nanodiamond and its epoxy based nanocomposites. Compos. Part B Eng. 2015, 78, 480–487. [Google Scholar] [CrossRef]
- Bisht, A.; Dasgupta, K.; Lahiri, D. Evaluating the effect of addition of nanodiamond on the synergistic effect of graphene-carbon nanotube hybrid on the mechanical properties of epoxy based composites. Polym. Test. 2020, 81, 106274. [Google Scholar] [CrossRef]
- Farooq, U.; Ali, M.U.; Hussain, S.J.; Ahmad, M.S.; Zafar, A.; Ghafoor, U.; Subhani, T. Improved Ablative Properties of Nanodiamond-Reinforced Carbon Fiber–Epoxy Matrix Composites. Polymers 2021, 13, 2035. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Mohanty, A. Influence of Nanodiamonds on the Mechanical Properties of Glass Fiber-/Carbon Fiber-Reinforced Polymer Nanocomposites. J. Mater. Eng. Perform. 2022, 31, 3847–3858. [Google Scholar] [CrossRef]
- Dhinakaran, V.; Lavanya, M.; Vigneswari, K.; Ravichandran, M.; Vijayakumar, M. Review on exploration of graphene in diverse applications and its future horizon. Mater. Today Proc. 2020, 27, 824–828. [Google Scholar] [CrossRef]
- Monetta, T.; Acquesta, A.; Bellucci, F. Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures. Aerospace 2015, 2, 423–434. [Google Scholar] [CrossRef]
- Dagdag, O.; Hsissou, R.; Berisha, A.; Erramli, H.; Hamed, O.; Jodeh, S.; El Harfi, A. Polymeric-Based Epoxy Cured with a Polyaminoamide as an Anticorrosive Coating for Aluminum 2024-T3 Surface: Experimental Studies Supported by Computational Modeling. J. Bio-Tribo-Corrosion 2019, 5, 1–13. [Google Scholar] [CrossRef]
- Madhankumar, A.; Nagarajan, S.; Rajendran, N.; Nishimura, T. EIS evaluation of protective performance and surface characterization of epoxy coating with aluminum nanoparticles after wet and dry corrosion test. J. Solid State Electrochem. 2012, 16, 2085–2093. [Google Scholar] [CrossRef]
- Zhu, W.; Li, W.; Mu, S.; Fu, N.; Liao, Z. Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties. Appl. Surf. Sci. 2017, 405, 157–168. [Google Scholar] [CrossRef]
- Yuan, C.; Zhao, M.; Sun, D.; Yang, L.; Zhang, L.; Guo, R.; Yao, F.; An, Y. Preparation and properties of few-layer graphene modified waterborne epoxy coatings. J. Appl. Polym. Sci. 2018, 135, 46743. [Google Scholar] [CrossRef]
- Daradmare, S.; Raj, S.; Bhattacharyya, A.R.; Parida, S. Factors affecting barrier performance of composite anti-corrosion coatings prepared by using electrochemically exfoliated few-layer graphene as filler. Compos. Part B Eng. 2018, 155, 1–10. [Google Scholar] [CrossRef]
- Hardiansyah, A.; Aditya, D.M.; Budiman, W.J.; Rahayu, S.; Alvan, F.M.; Karim, G. Fabrication and Evaluation of Graphene-Based Materials through Electrochemical Exfoliation and Expansion Mechanism; AIP Publishing LLC: Melville, NY, USA, 2022; p. 050016. [Google Scholar]
- Raza, M.A.; Westwood, A. Thermal contact resistance of various carbon nanomaterial-based epoxy composites developed for thermal interface applications. J. Mater. Sci. Mater. Electron. 2019, 30, 10630–10638. [Google Scholar] [CrossRef]
- Nazir, M.H.; Khan, Z.A.; Saeed, A.; Siddaiah, A.; Menezes, P.L. Synergistic wear-corrosion analysis and modelling of nanocomposite coatings. Tribol. Int. 2018, 121, 30–44. [Google Scholar] [CrossRef]
- Chang, K.-C.; Hsu, M.-H.; Lu, H.-I.; Lai, M.-C.; Liu, P.-J.; Hsu, C.-H.; Ji, W.-F.; Chuang, T.-L.; Wei, Y.; Yeh, J.-M.; et al. Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel. Carbon 2014, 66, 144–153. [Google Scholar] [CrossRef]
- Shaker, M.; Salahinejad, E.; Cao, W.; Meng, X.; Asl, V.Z.; Ge, Q. The effect of graphene orientation on permeability and corrosion initiation under composite coatings. Constr. Build. Mater. 2022, 319, 126080. [Google Scholar] [CrossRef]
- Rafique, I.; Kausar, A.; Muhammad, B. Fabrication and Characterization of High-Performance Diglycidyl Ether of Bisphenol-A/Tetrabromobisphenol-A Blend Reinforced with Multiwalled Carbon Nanotube Composite. Polym.-Plast. Technol. Eng. 2017, 56, 321–333. [Google Scholar] [CrossRef]
- Anwar, Z.; Kausar, A.; Khan, L.A.; Muhammad, B. Modified graphene nanoplatelet and epoxy/block copolymer-based nanocomposite: Physical characteristic and EMI shielding studies. Nanocomposites 2016, 2, 141–151. [Google Scholar] [CrossRef]
- Kausar, A.; Anwar, Z.; Khan, L.A.; Muhammad, B. Functional graphene nanoplatelet reinforced epoxy resin and polystyrene-based block copolymer nanocomposite. Full Nanotub. Carbon Nanostructures 2017, 25, 47–57. [Google Scholar] [CrossRef]
- Kausar, A. Polyimide, polybenzimidazole-in situ-polyaniline nanoparticle and carbon nano-onion-based nanocomposite designed for corrosion protection. Int. J. Polym. Anal. Charact. 2017, 22, 557–567. [Google Scholar] [CrossRef]
- Kausar, A. High performance epoxy/polyester-based nanocomposite coatings for multipurpose applications: A review. J. Plast. Film Sheeting 2020, 36, 391–408. [Google Scholar] [CrossRef]
- Kausar, A. Versatile epoxy/polyaniline and derived nanocomposite: From strategic design to advance application. Mater. Res. Innov. 2021, 25, 321–330. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Sun, H.; Gao, C. Superstructured assembly of nanocarbons: Fullerenes, nanotubes, and graphene. Chem. Rev. 2015, 115, 7046–7117. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sudhakara, P.; Omran, A.A.B.; Singh, J.; Ilyas, R.A. Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications. Polymers 2021, 13, 2898. [Google Scholar] [CrossRef]
- Kujur, M.S.; Mallick, A.; Gupta, M. Development of Magnesium Nanocomposites by Powder Metallurgy for Multifunctional Applications: Review. Curr. Nanomater. 2021, 6, 185–206. [Google Scholar] [CrossRef]
- Pavase, T.R.; Lin, H.; Shaikh, Q.-U.-A.; Hussain, S.; Li, Z.; Ahmed, I.; Lv, L.; Sun, L.; Shah, S.B.H.; Kalhoro, M.T. Recent advances of conjugated polymer (CP) nanocomposite-based chemical sensors and their applications in food spoilage detection: A comprehensive review. Sens. Actuators B Chem. 2018, 273, 1113–1138. [Google Scholar] [CrossRef]
- Deng, S.; Djukic, L.; Paton, R.; Ye, L. Thermoplastic–epoxy interactions and their potential applications in joining composite structures—A review. Compos. Part A Appl. Sci. Manuf. 2015, 68, 121–132. [Google Scholar] [CrossRef]
- McMillon-Brown, L. Biomimetic advances in photovoltaics with potential aerospace applications. In Biomimicry for Aerospace; Elsevier: Amsterdam, The Netherlands, 2022; pp. 291–329. [Google Scholar]
- Momoh, A.; Adams, F.; Samuel, O.; Bolade, O.; Olubambi, P. Corrosion Prevention: The Use of Nanomaterials. In Modified Nanomaterials for Environmental Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 91–105. [Google Scholar]
- Zhang, J.; Zhu, A. Study on the synthesis of PANI/CNT nanocomposite and its anticorrosion mechanism in waterborne coatings. Prog. Org. Coat. 2021, 159, 106447. [Google Scholar] [CrossRef]
Sample | Ecorr (V) | Icorr (Acm−2) |
---|---|---|
Neat epoxy | −0.75 | 1.6 × 10−7 |
Epoxy/P2BA/Graphene 0.5% | −0.33 | 0 × 10−11 |
Epoxy/P2BA/Graphene 1% | −0.69 | 5.5 × 10−10 |
Sample | Tensile Strength (MPa) | Young’s Modulus (MPa) | Elongation at Break (%) |
---|---|---|---|
Neat polyamide | 54.6 ± 3.8 | 2410.2 ± 60.2 | 258.14 ± 14.84 |
Polyamide/purified multi-walled carbon nanotube | 77.0 ± 5.3 | 3675.6 ± 125.3 | 4.56 ± 0.24 |
Polyamide/modified multi-walled carbon nanotube | 99.4 ± 8.1 | 5278.8 ± 112.9 | 2.96 ± 0.17 |
Sample | Contact Angle (Degree) |
---|---|
Unfilled epoxy resin | 60.4 ± 1 |
Epoxy/graphene | 75.3 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kausar, A.; Ahmad, I.; Zhao, T. Corrosion-Resisting Nanocarbon Nanocomposites for Aerospace Application: An Up-to-Date Account. Appl. Nano 2023, 4, 138-158. https://doi.org/10.3390/applnano4020008
Kausar A, Ahmad I, Zhao T. Corrosion-Resisting Nanocarbon Nanocomposites for Aerospace Application: An Up-to-Date Account. Applied Nano. 2023; 4(2):138-158. https://doi.org/10.3390/applnano4020008
Chicago/Turabian StyleKausar, Ayesha, Ishaq Ahmad, and Tingkai Zhao. 2023. "Corrosion-Resisting Nanocarbon Nanocomposites for Aerospace Application: An Up-to-Date Account" Applied Nano 4, no. 2: 138-158. https://doi.org/10.3390/applnano4020008