Electrodeposition and Characterization of Conducting Polymer Films Obtained from Carbazole and 2-(9H-carbazol-9-yl)acetic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Electrodeposition of Polymer Films
2.3. Characterization Techniques
2.4. Theoretical Calculations
3. Results
3.1. Electropolymerization of Carbazole and 2-(9H-carbazol-9-yl)acetic Acid
3.2. Theoretical and Electrochemical Study of the Oxidation of Mixtures of Cz and CzA
3.2.1. Coupling between Oxidized Monomers
3.2.2. Electrochemical Polymerization of Mixtures of Cz and CzA
Polymers with a High Portion of Cz Monomers
Polymers with a Balanced Portion of Cz and CzA Monomers
Polymers with a Low Portion of Cz Monomers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Pochan, J.M.; Pochan, D.F.; Rommelmann, H.; Gibson, H.W. Kinetics of doping and degradation of polyacetylene by oxygen. Macromolecules 1981, 14, 110–114. [Google Scholar] [CrossRef]
- Masuda, T.; Tang, B.Z.; Higashimura, T.; Yamaoka, H. Thermal degradation of polyacetylenes carrying substituents. Macromolecules 1985, 18, 2369–2373. [Google Scholar] [CrossRef]
- Jain, R.; Jadon, N.; Pawaiya, A. Polypyrrole based next generation electrochemical sensors and biosensors: A review. TRAC 2017, 97, 363–373. [Google Scholar] [CrossRef]
- Stejskal, J.; Trchová, M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018, 72, 1563–1595. [Google Scholar] [CrossRef]
- Liao, G.; Li, Q.; Xu, Z. The chemical modification of polyaniline with enhanced properties: A review. Progr. Org. Coat. 2019, 126, 35–43. [Google Scholar] [CrossRef]
- Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in conductive polyaniline-based nanocomposites for biomedical applications: A review. J. Med. Chem. 2020, 63, 1–22. [Google Scholar] [CrossRef]
- Kaloni, T.P.; Giesbrecht, P.K.; Schreckenbach, G.; Freund, M.S. Polythiophene: From fundamental perspectives to applications. Chem. Mater. 2017, 29, 10248–10283. [Google Scholar] [CrossRef]
- Al-Refai, H.H.; Ganash, A.A.; Hussein, M.A. Polythiophene and its derivatives–Based Nanocomposites in Electrochemical Sensing: A Mini Review. Mater. Today Com. 2021, 26, 101935. [Google Scholar] [CrossRef]
- Cao, H.; Rupar, P.A. Recent advances in conjugated furans. Chem. Eur. J. 2017, 23, 14670–14675. [Google Scholar] [CrossRef]
- Yao, W.; Liu, P.; Liu, C.; Xu, J.; Lin, K.; Kang, H.; Li, M.; Lan, X.; Jiang, F. Flexible conjugated polyfurans for bifunctional electrochromic energy storage application. Chem. Eng. J. 2022, 428, 131125. [Google Scholar] [CrossRef]
- Nayana, V.; Kandasubramanian, B. Polycarbazole and its derivatives: Progress, synthesis, and applications. J. Polym. Res. 2020, 27, 285. [Google Scholar] [CrossRef]
- Bekkar, F.; Bettahar, F.; Moreno, I.; Meghabar, R.; Hamadouche, M.; Hernaez, E.; Vilas-Villa, J.L.; Ruiz-Rubio, L. Polycarbazole and its derivatives: Synthesis and applications. A review of the last 10 years. Polymers 2020, 12, 2227. [Google Scholar] [CrossRef] [PubMed]
- Naskar, P.; Maiti, A.; Chakraborty, P.; Kundu, D.; Biswas, B.; Banerjee, A. Chemical supercapacitors: A review focusing on metallic compounds and conducting polymers. J. Mater. Chem. A 2021, 9, 1970–2017. [Google Scholar] [CrossRef]
- Basnayaka, P.A.; Ram, M.K. A Review of Supercapacitor Energy Storage Using Nanohybrid Conducting Polymers and Carbon Electrode Materials. In Conducting Polymer Hybrids, Springer Series on Polymer and Composite Materials; Kumar, V., Kalia, S., Swart, H., Eds.; Springer: Cham, Switzerland, 2017; pp. 165–192. [Google Scholar]
- Ramanavicius, S.; Ramanavicius, A. Conducting polymers in the design of biosensors and biofuel cells. Polymers 2021, 13, 49. [Google Scholar] [CrossRef]
- Mahato, N.; Jang, H.; Dhyani, A.; Cho, S. Recent progress in conducting polymers for hydrogen storage and fuel cell applications. Polymers 2020, 12, 2480. [Google Scholar] [CrossRef]
- Umoren, S.A.; Solomon, M.M. Protective polymeric films for industrial substrates: A critical review on past and recent applications with conducting polymers and polymer composites. Progr. Mater. Sci. 2019, 104, 380–450. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Y. A review on conducting polymers and nanopolymer composite coatings for steel corrosion protection. Coatings 2019, 9, 807. [Google Scholar] [CrossRef] [Green Version]
- Wong, Y.C.; Ang, B.C.; Haseeb, A.; Baharuddin, A.A.; Wong, Y.H. Conducting polymers as chemiresistive gas sensing materials: A review. J. Electrochem. Soc. 2020, 167, 037503. [Google Scholar] [CrossRef]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. Chemiresistive polyaniline-based gas sensors: A mini review. Sens. Actuators B 2015, 220, 534–548. [Google Scholar]
- Lakard, B. Electrochemical biosensors based on conducting polymers: A review. Appl. Sci. 2020, 10, 6614. [Google Scholar] [CrossRef]
- El-Said, W.A.; Abdelshakour, M.; Choi, J.H.; Choi, J.W. Application of conducting polymer nanostructures to electrochemical biosensors. Molecules 2020, 25, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talikowska, M.; Fu, X.; Lisak, G. Application of conducting polymers to wound care and skin tissue engineering: A review. Biosens. Bioelectron. 2019, 135, 50–63. [Google Scholar] [CrossRef]
- Guo, B.; Ma, P.X. Conducting polymers for tissue engineering. Biomacromolecules 2018, 19, 1764–1782. [Google Scholar] [CrossRef]
- Grazulevicius, J.V.; Strohriegl, P.; Pielichowski, J.; Pielichowski, K. Carbazole containing polymers: Synthesis, properties and applications. Prog. Polym. Sci. 2003, 28, 1297–1353. [Google Scholar] [CrossRef]
- Alem, S.; Graddage, N.; Lu, J.; Kololuoma, T.; Movileanu, R.; Tao, Y. Flexographic printing of polycarbazole-based inverted solar cells. Org. Electron. 2018, 52, 146–152. [Google Scholar] [CrossRef]
- Burgués-Ceballos, I.; Hermerschmidt, F.; Akkuratov, A.V.; Susarova, D.K.; Troshin, P.A.; Choulis, S.A. High-Performing Polycarbazole Derivatives for Efficient Solution-Processing of Organic Solar Cells in Air. ChemSusChem 2015, 8, 4209–4215. [Google Scholar] [CrossRef]
- Bovill, E.; Yi, H.; Iraqi, A.; Lidzey, D.G. The fabrication of polyfluorene and polycarbazole-based photovoltaic devices using an air-stable process route. Appl. Phys. Lett. 2014, 105, 223302. [Google Scholar] [CrossRef]
- Kocaeren, A.A. Electrochemical synthesis and electrochromic application of a novel polymer based on carbazole. Org. Electron. 2015, 24, 219–226. [Google Scholar] [CrossRef]
- Soganci, T.; Baygu, Y.; Gök, Y.; Ak, M. Disulfide-linked symmetric N-alkyl carbazole derivative as a new electroactive monomer for electrochromic applications. Synth. Met. 2018, 244, 120–127. [Google Scholar] [CrossRef]
- Chen, C.H.; Wang, Y.; Michinobu, T.; Chang, S.W.; Chiu, Y.C.; Ke, C.Y.; Liou, G.S. Donor-Acceptor Effect of Carbazole-Based Conjugated Polymer Electrets on Photoresponsive Flash Organic Field-Effect Transistor Memories. ACS Appl. Mater. Interfaces 2020, 12, 6144–6150. [Google Scholar] [CrossRef]
- Rice, N.A.; Bodnaryk, W.J.; Mirka, B.; Melville, O.A.; Adronov, A.; Lessard, B.H. Polycarbazole-Sorted Semiconducting Single-Walled Carbon Nanotubes for Incorporation into Organic Thin Film Transistors. Adv. Electron. Mater. 2019, 5, 1800539. [Google Scholar] [CrossRef] [Green Version]
- Grigoras, A.G. A review on medical applications of poly(N-vinylcarbazole) and its derivatives. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 888–900. [Google Scholar] [CrossRef]
- Pernites, R.; Ponnapati, R.; Felipe, M.J.; Advincula, R. Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: Pre-polymerization complexed terthiophene and carbazole electroactive monomers. Biosens. Bioelectron. 2011, 26, 2766–2771. [Google Scholar] [CrossRef]
- Morin, J.F.; Leclerc, M.; Adès, D.; Siove, A. Polycarbazoles: 25 Years of Progress. Macromol. Rapid Commun. 2005, 26, 761–778. [Google Scholar] [CrossRef]
- Ates, M.; Uludag, N. Carbazole derivative synthesis and their electropolymerization. J. Solid State Electrochem. 2016, 20, 2599–2612. [Google Scholar] [CrossRef]
- Karon, K.; Lapkowski, M. Carbazole electrochemistry: A short review. J. Solid State Electrochem. 2015, 19, 2601–2610. [Google Scholar] [CrossRef] [Green Version]
- Boudreault, P.L.T.; Beaupré, S.; Leclerc, M. Polycarbazoles for plastic electronics. Polym. Chem. 2010, 1, 127–136. [Google Scholar] [CrossRef]
- Michinobu, T.; Osako, H.; Shigehara, K. Synthesis and Properties of 1,8-Carbazole-Based Conjugated Copolymers. Polymers 2010, 2, 159–173. [Google Scholar] [CrossRef]
- Liang, Y.K.; Ruan, B.F.; Tian, Y.P. Synthesis, crystal structure and in vitro antitumor activity of a novel organotin(IV) complex with 9-hexyl-9H-carbazole-3-carboxylic acid. Russ. J. Coord. Chem. 2012, 38, 396–401. [Google Scholar] [CrossRef]
- Düdükcü, M.; Udum, Y.A.; Ergün, Y.; Köleli, F. Electrodeposition of Poly(4-methyl carbazole-3-carboxylic acid) on Steel Surfaces and Corrosion Protection of Steel. J. Appl. Polymer. Sci. 2009, 111, 1496–1500. [Google Scholar] [CrossRef]
- Elkhidr, H.E.; Ertekin, Z.; Udum, Y.A.; Pekmez, K. Electrosynthesis and characterizations of electrochromic and soluble polymer films based on N- substituted carbazole derivates. Synth. Met. 2020, 260, 116253. [Google Scholar] [CrossRef]
- Kuo, C.W.; Hsieh, T.H.; Hsieh, C.K.; Liao, J.W.; Wu, T.Y. Electrosynthesis and characterization of four electrochromic polymers based on carbazole and indole-6-carboxylic acid and their applications in high-contrast electrochromic devices. J. Electrochem. Soc. 2014, 161, D782. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Zhang, Y.; Du, H.; Zhao, J. Design and Characterization of New D–A Type Electrochromic Conjugated Copolymers Based on Indolo[3,2-b]Carbazole, Isoindigo and Thiophene Units. Polymers 2019, 11, 1626. [Google Scholar] [CrossRef] [Green Version]
- Aristizabal, J.A.; Soto, J.P.; Ballesteros, L.; Muñoz, E.; Ahumada, J.C. Synthesis, electropolymerization, and photoelectrochemical characterization of 2,7-di(thiophen-2-yl)-N-methylcarbazole. Polym. Bull. 2012, 70, 35–46. [Google Scholar] [CrossRef]
- Aristizabal, J.A.; Ahumada, J.C.; Soto, J.P. Electrochemical preparation and characterization of a new conducting copolymer of 2,7-carbazole and 3-octylthiophene. Polym. Bull. 2017, 74, 1649–1660. [Google Scholar] [CrossRef]
- Guzel, M.; Karatas, E.; Ak, M. A new way to obtain black electrochromism: Appropriately covering whole visible regions by absorption spectra of copolymers composed of EDOT and carbazole derivatives. Smart Mater. Struct. 2019, 28, 025013. [Google Scholar] [CrossRef]
- Aydin, A.; Kaya, I. Syntheses of novel copolymers containing carbazole and their electrochromic properties. J. Electroanal. Chem. 2013, 691, 1–12. [Google Scholar] [CrossRef]
- Lakard, S.; Contal, E.; Mougin, K.; Magnenet, C.; Lakard, B. Electrochemical preparation and physicochemical study of polymers obtained from carbazole and N-((methoxycarbonyl)methyl)carbazole. Synth. Met. 2020, 270, 116584. [Google Scholar] [CrossRef]
- Contal, E.; Sougueh, C.M.; Lakard, S.; Et Taouil, A.; Magnenet, C.; Lakard, B. Investigation of polycarbazoles thin films prepared by electrochemical oxidation of synthesized carbazole derivatives. Front. Mater. 2019, 6, 131. [Google Scholar] [CrossRef]
- Pittenger, B.; Erina, N.; Su, C. Mechanical Property Mapping at the Nanoscale Using PeakForce QNM Scanning Probe Technique. In Nanomechanical Analysis of High Performance Materials; Solid Mechanics and Its Applications; Tiwari, A., Ed.; Springer: Dordrecht, The Netherlands, 2014; Volume 203, pp. 31–51. [Google Scholar]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1989, 10, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- McCormick, T.M.; Bridges, C.R.; Carrera, E.I.; DiCarmine, P.M.; Gibson, G.L.; Hollinger, J.; Kozycz, L.M.; Seferos, D.S. Conjugated Polymers: Evaluating DFT Methods for More Accurate Orbital Energy Modeling. Macromolecules 2013, 46, 3879–3886. [Google Scholar] [CrossRef]
- Zhuang, W.; Bolognesi, M.; Seri, M.; Henriksson, P.; Gedefaw, D.; Kroon, R.; Jarvid, M.; Lundin, A.; Wang, E.; Muccini, M.; et al. Influence of Incorporating Different Electron-Rich Thiophene-Based Units on the Photovoltaic Properties of Isoindigo-Based Conjugated Polymers: An Experimental and DFT Study. Macromolecules 2013, 46, 8488–8499. [Google Scholar] [CrossRef]
- Nayyar, I.H.; Batista, E.R.; Tretiak, S.; Saxena, A.; Smith, D.L.; Martin, R.L. Localization of Electronic Excitations in Conjugated Polymers Studied by DFT. J. Phys. Chem. Lett. 2011, 2, 566–571. [Google Scholar] [CrossRef]
- Ambrose, J.F.; Nelson, R.F. Anodic oxidation pathways of carbazoles (I. Carbazole and N-substituted derivatives). J. Electrochem. Soc. 1968, 115, 1159–1163. [Google Scholar] [CrossRef]
- Ravindranath, R.; Ajikumar, P.K.; Bahulayan, S.; Hanafiah, N.B.; Baba, A.; Advincula, R.C.; Knoll, W.; Valiyaveettil, S. Ultrathin conjugated polymer network films of carbazole functionalized poly(p-phenylenes) via electropolymerization. J. Phys. Chem. B 2007, 111, 6336–6343. [Google Scholar] [CrossRef]
- Lapkowski, M.; Zak, J.; Karon, K.; Marciniec, B.; Prukała, W. The mixed carbon–nitrogen conjugation in the carbazole based polymer; the electrochemical, UV Vis, EPR, and IR studies on 1,4-bis[(E)2-(9H-carbazol-9-yl)vinyl]benzene. Electrochim. Acta 2011, 56, 4105–4111. [Google Scholar]
- Asavapiriyanont, S.; Chandler, G.K.; Gunawardena, G.A.; Pletcher, D. The electrodeposition of polypyrrole films from aqueous solutions. J. Electroanal. Chem. 1984, 177, 229–244. [Google Scholar] [CrossRef]
- Hillman, A.R.; Mallen, E.F. Nucleation and growth of polythiophene films on gold electrodes. J. Electroanal. Chem. 1987, 220, 351–367. [Google Scholar] [CrossRef]
- Hamnett, A.; Hillman, A.R. An ellipsometric study of the nucleation and growth of polythiophene films. J. Electrochem. Soc. 1988, 135, 2517–2524. [Google Scholar] [CrossRef]
Coupling Leading to a Dimer (Cz-CzA Coupling) | GCz-CzA (in eV) |
---|---|
9-1′ coupling | −34,115.830 |
9-3′ coupling | −34,116.021 |
3-1′ coupling | −34,116.374 |
1-1′ coupling | −34,116.402 |
1-3′ coupling | −34,116.483 |
3-3′ coupling | −34,116.538 |
Aspect (Naked-Eye) | Young Modulus (AFM) | Topography (AFM, SEM) | Intensity (CV) | Insertion of Carboxyl Groups | |
---|---|---|---|---|---|
Cz | Green, Thick | High | Globular, cracks | High | No |
Cz95-CzA5 | Green, very thick | Medium/High | Globular, no crack | High | Yes |
Cz90-CzA10 | Green, very thick | Medium/Low | Globular, no crack | High | Yes |
Cz70-CzA30 | Green, very thick | Low | Globular, no crack | High | Yes |
Cz50-CzA50 | Green, very thick | Low | Globular, no crack | Medium | Yes |
Cz30-CzA70 | Light green, thick | Medium/Low | Globular, no crack | Medium | Yes |
Cz10-CzA90 | Colourless, very thin | Medium/High | Globular | Low | Yes |
Cz5-CzA95 | Colourless, very thin | Medium/High | Globular | Low | Yes |
CzA | Colourless, very thin | High | Globular, cracks | Medium | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakard, S.; Contal, E.; Mougin, K.; Lakard, B. Electrodeposition and Characterization of Conducting Polymer Films Obtained from Carbazole and 2-(9H-carbazol-9-yl)acetic Acid. Electrochem 2022, 3, 322-336. https://doi.org/10.3390/electrochem3020022
Lakard S, Contal E, Mougin K, Lakard B. Electrodeposition and Characterization of Conducting Polymer Films Obtained from Carbazole and 2-(9H-carbazol-9-yl)acetic Acid. Electrochem. 2022; 3(2):322-336. https://doi.org/10.3390/electrochem3020022
Chicago/Turabian StyleLakard, Sophie, Emmanuel Contal, Karine Mougin, and Boris Lakard. 2022. "Electrodeposition and Characterization of Conducting Polymer Films Obtained from Carbazole and 2-(9H-carbazol-9-yl)acetic Acid" Electrochem 3, no. 2: 322-336. https://doi.org/10.3390/electrochem3020022
APA StyleLakard, S., Contal, E., Mougin, K., & Lakard, B. (2022). Electrodeposition and Characterization of Conducting Polymer Films Obtained from Carbazole and 2-(9H-carbazol-9-yl)acetic Acid. Electrochem, 3(2), 322-336. https://doi.org/10.3390/electrochem3020022