Electrolytic Reduction of Titanium Dioxide in Molten LiCl–Li2O
Abstract
:1. Introduction
2. Materials and Methods
3. Density Function Theory Modeling
4. Results and Discussion
4.1. Soaking Test for TiO2
4.2. Effect of the Reduction Potential on the Electrolytic TiO2 Reduction
4.3. Effect of the Applied Charges on the TiO2 Reductions at −0.3 V vs. Li/Li+
4.4. TiO2 Reduction Mechanism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shenouda, A.Y.; Murali, K.R. Electrochemical Properties of Doped Lithium Titanate Compounds and Their Performance in Lithium Rechargeable Batteries. J. Power Sources 2008, 176, 332–339. [Google Scholar] [CrossRef]
- Nemeth, T.; Schröer, P.; Kuipers, M.; Sauer, D.U. Lithium Titanate Oxide Battery Cells for High-Power Automotive Applications —Electro-Thermal Properties, Aging Behavior and Cost Considerations. J. Energy Storage 2020, 31, 101656. [Google Scholar] [CrossRef]
- Cui, C.; Hu, B.; Zhao, L.; Liu, S. Titanium Alloy Production Technology, Market Prospects and Industry Development. Mater. Des. 2011, 32, 1684–1691. [Google Scholar] [CrossRef]
- Smith, P.R.; Froes, F.H. Developments in Titanium Metal Matrix Composites. JOM 1984, 36, 19–26. [Google Scholar] [CrossRef]
- Chen, G.Z.; Fray, D.J.; Farthing, T.W. Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride. Nature 2000, 407, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Hu, X.; Ma, M.; Wang, D.; Qiu, G.; Jin, X.; Chen, G.Z. “Perovskitization”-Assisted Electrochemical Reduction of Solid TiO2 in Molten CaCl2. Angew. Chem. Int. Ed. 2006, 45, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.O. Calciothermic Reduction of TiO2 and in Situ Electrolysis of CaO in the Molten CaCl2. J. Phys. Chem. Solids 2005, 66, 461–465. [Google Scholar] [CrossRef]
- Suzuki, R.O. Direct Reduction Processes for Titanium Oxide in Molten Salt. JOM 2007, 59, 68–71. [Google Scholar] [CrossRef] [Green Version]
- Ono, K.; Suzuki, R.O. A New Concept for Producing Ti Sponge: Calciothermic Reduction. JOM 2002, 54, 59–61. [Google Scholar] [CrossRef]
- Shin, H.-S.; Hur, J.-M.; Jeong, S.M.; Jung, K.Y. Direct Electrochemical Reduction of Titanium Dioxide in Molten Lithium Chloride. J. Ind. Eng. Chem. 2012, 18, 438–442. [Google Scholar] [CrossRef]
- Herrmann, S.D.; Li, S.X. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel Via Electrolytic Reduction and Electrorefining. Nucl. Technol. 2010, 171, 247–265. [Google Scholar] [CrossRef]
- Jeong, S.M.; Jung, J.-Y.; Seo, C.-S.; Park, S.-W. Characteristics of an Electrochemical Reduction of Ta2O5 for the Preparation of Metallic Tantalum in a LiCl–Li2O Molten Salt. J. Alloy. Compd. 2007, 440, 210–215. [Google Scholar] [CrossRef]
- Schwandt, C.; Alexander, D.T.L.; Fray, D.J. The Electro-Deoxidation of Porous Titanium Dioxide Precursors in Molten Calcium Chloride under Cathodic Potential Control. Electrochim. Acta 2009, 54, 3819–3829. [Google Scholar] [CrossRef]
- Schwandt, C.; Fray, D.J. Determination of the Kinetic Pathway in the Electrochemical Reduction of Titanium Dioxide in Molten Calcium Chloride. Electrochim. Acta 2005, 51, 66–76. [Google Scholar] [CrossRef]
- Alexander, D.T.L.; Schwandt, C.; Fray, D.J. The Electro-Deoxidation of Dense Titanium Dioxide Precursors in Molten Calcium Chloride Giving a New Reaction Pathway. Electrochim. Acta 2011, 56, 3286–3295. [Google Scholar] [CrossRef]
- Kar, P.; Evans, J.W. A Shrinking Core Model for the Electro-Deoxidation of Metal Oxides in Molten Halide Salts. Electrochim. Acta 2008, 53, 5260–5265. [Google Scholar] [CrossRef]
- Suzuki, R.O.; Ono, K.; Teranuma, K. Calciothermic Reduction of Titanium Oxide and In-Situ Electrolysis in Molten CaCl2. Metall. Mater. Trans. B 2003, 34, 287–295. [Google Scholar] [CrossRef]
- Kikuchi, T.; Yoshida, M.; Matsuura, S.; Natsui, S.; Tsuji, E.; Habazaki, H.; Suzuki, R.O. Rapid Reduction of Titanium Dioxide Nano-Particles by Reduction with a Calcium Reductant. J. Phys. Chem. Solids 2014, 75, 1041–1048. [Google Scholar] [CrossRef] [Green Version]
- Jiang, K.; Hu, X.; Sun, H.; Wang, D.; Jin, X.; Ren, Y.; Chen, G.Z. Electrochemical Synthesis of LiTiO2 and LiTi2O4 in Molten LiCl. Chem. Mater. 2004, 16, 4324–4329. [Google Scholar] [CrossRef]
- Jin-Mok, H.; Su-Chul, L.; Sang-Mun, J.; Chung-Seok, S. Electrochemical Reduction of TiO2 in Molten LiCl–Li2O. Chem. Lett. 2007, 36, 1028–1029. [Google Scholar] [CrossRef]
- Dring, K. Direct Electrochemical Reduction of Titanium Dioxide in Molten Salts. Key Eng. Mater. 2010, 436, 27–34. [Google Scholar] [CrossRef]
- Bhagat, R.; Dye, D.; Raghunathan, S.L.; Talling, R.J.; Inman, D.; Jackson, B.K.; Rao, K.K.; Dashwood, R.J. In Situ Synchrotron Diffraction of the Electrochemical Reduction Pathway of TiO2. Acta Mater. 2010, 58, 5057–5062. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.T.L.; Schwandt, C.; Fray, D.J. Microstructural Kinetics of Phase Transformations during Electrochemical Reduction of Titanium Dioxide in Molten Calcium Chloride. Acta Mater. 2006, 54, 2933–2944. [Google Scholar] [CrossRef]
- Shi, M.; Li, S.; Zhao, H. High Current Efficiency of NiO Electro-Reduction in Molten Salt. J. Electrochem. Soc. 2018, 165, E768–E772. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Burak, A.J.; Simpson, M.F. Electrochemical Measurement of Li2O in Molten LiCl Salt. ECS Trans. 2016, 75, 55–61. [Google Scholar] [CrossRef]
- Joseph, T.B.; Sanil, N.; Mohandas, K.S.; Nagarajan, K. A Study of Graphite as Anode in the Electro-Deoxidation of Solid UO2 in LiCl-Li2O Melt. J. Electrochem. Soc. 2015, 162, E51–E58. [Google Scholar] [CrossRef]
- van de Krol, R.; Goossens, A.; Schoonman, J. Spatial Extent of Lithium Intercalation in Anatase TiO2. J. Phys. Chem. B 1999, 103, 7151–7159. [Google Scholar] [CrossRef]
- Macklin, W.J.; Neat, R.J. Performance of Titanium Dioxide-Based Cathodes in a Lithium Polymer Electrolyte Cell. Solid State Ion. 1992, 53–56, 694–700. [Google Scholar] [CrossRef]
- Merwin, A. Material Interactions with Molten LiCl-Li2O-Li. Ph.D. Thesis, University of Nevada, Reno, NV, USA, 2016. [Google Scholar]
- Chen, G.Z.; Gordo, E.; Fray, D.J. Direct Electrolytic Preparation of Chromium Powder. Metall. Mater. Trans. B 2004, 35, 223–233. [Google Scholar] [CrossRef]
- Gordo, E.; Chen, G.Z.; Fray, D.J. Toward Optimisation of Electrolytic Reduction of Solid Chromium Oxide to Chromium Powder in Molten Chloride Salts. Electrochim. Acta 2004, 49, 2195–2208. [Google Scholar] [CrossRef]
- Fray, D.J.; Chen, G.Z. Reduction of Titanium and Other Metal Oxides Using Electrodeoxidation. Mater. Sci. Technol. 2004, 20, 295–300. [Google Scholar] [CrossRef]
- Robin, M.B.; Day, P. Mixed Valence Chemistry-A Survey and Classification. In Advances in Inorganic Chemistry and Radiochemistry; Emeléus, H.J., Sharpe, A.G., Eds.; Academic Press: Cambridge, UK, 1968; Volume 10, pp. 247–422. ISBN 0065-2792. [Google Scholar]
- Xiao, W.; Jin, X.; Deng, Y.; Wang, D.; Hu, X.; Chen, G.Z. Electrochemically Driven Three-Phase Interlines into Insulator Compounds: Electroreduction of Solid SiO2 in Molten CaCl2. ChemPhysChem 2006, 7, 1750–1758. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, D.; Xiao, W.; Jin, X.; Hu, X.; Chen, G.Z. Electrochemistry at Conductor/Insulator/Electrolyte Three-Phase Interlines: A Thin Layer Model. J. Phys. Chem. B 2005, 109, 14043–14051. [Google Scholar] [CrossRef]
- Wu, T.; Jin, X.; Xiao, W.; Hu, X.; Wang, D.; Chen, G.Z. Thin Pellets: Fast Electrochemical Preparation of Capacitor Tantalum Powders. Chem. Mater. 2007, 19, 153–160. [Google Scholar] [CrossRef]
- Ohzuku, T. Zero-Strain Insertion Material of Li1∕3Ti5∕3O4 for Rechargeable Lithium Cells. J. Electrochem. Soc. 1995, 142, 1431. [Google Scholar] [CrossRef]
- Qiu, G.; Jiang, K.; Ma, M.; Wang, D.; Jin, X.; Chen, G.Z. Roles of Cationic and Elemental Calcium in the Electro-Reduction of Solid Metal Oxides in Molten Calcium Chloride. Z. Nat. A 2014, 62, 292. [Google Scholar] [CrossRef]
- Mandroyan, A.; Mourad-Mahmoud, M.; Doche, M.-L.; Hihn, J.-Y. Effects of Ultrasound and Temperature on Copper Electro Reduction in Deep Eutectic Solvents (DES). Ultrason. Sonochem. 2014, 21, 2010–2019. [Google Scholar] [CrossRef] [PubMed]
Reference | Temperature | Reduction Conditions | Products | Characterization |
---|---|---|---|---|
[19] | 700 °C | TiO2 pellets, cell potentials 1.8 V and 3.2 V | Li2TiO4, LiTiO2 | ICP, XRD, and TEM |
[20] | 650 °C | TiO2 powder, constant current at 1.2 A, cell potential 2.7 V | Li2TiO4, LiTiO2, Ti | XRD and SEM |
[10] | 650 °C | TiO2 powder, cell potential 3.0 V | LiTiO2, TiO, Ti2O, Ti | XRD and SEM |
[21] | 850 °C | Thin TiO2 film, 0 to −2.0 V vs. Ni/NiO | Li2TiO3, TiO, Ti3O5, Ti2O3, Ti | CV |
Reaction | Equation | ∆Gr (kJ·mol−1) | Theoretical Potential (V) |
---|---|---|---|
(6) | −125.0 | -- | |
(7) | −113.0 | -- | |
(8) | −11.0 | -- | |
(9) | 0.8 | −0.01 | |
(10) | −22.3 | -- | |
(11) | 227.0 | −1.18 | |
(12) | 222.0 | −2.30 | |
(13) | 212.0 | −2.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Liu, B.; Li, S.; Zhao, H. Electrolytic Reduction of Titanium Dioxide in Molten LiCl–Li2O. Electrochem 2021, 2, 224-235. https://doi.org/10.3390/electrochem2020016
Shi M, Liu B, Li S, Zhao H. Electrolytic Reduction of Titanium Dioxide in Molten LiCl–Li2O. Electrochem. 2021; 2(2):224-235. https://doi.org/10.3390/electrochem2020016
Chicago/Turabian StyleShi, Meng, Bin Liu, Shelly Li, and Haiyan Zhao. 2021. "Electrolytic Reduction of Titanium Dioxide in Molten LiCl–Li2O" Electrochem 2, no. 2: 224-235. https://doi.org/10.3390/electrochem2020016
APA StyleShi, M., Liu, B., Li, S., & Zhao, H. (2021). Electrolytic Reduction of Titanium Dioxide in Molten LiCl–Li2O. Electrochem, 2(2), 224-235. https://doi.org/10.3390/electrochem2020016