Electrodeposition of Aluminum in the 1-Ethyl-3-Methylimidazolium Tetrachloroaluminate Ionic Liquid
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Materials
2.2. Procedure and Methodology
2.3. Chloroaluminate Complexes Distribution Calculation
3. Results and Discussion
3.1. Stability Window of [EMIm]AlCl4 at Various Temperatures
3.2. Cyclic Voltammetry in AlCl3/[EMIm]AlCl4 (1:5)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; VanderNoot, T.J. Electrodeposition of Aluminium from Nonaqueous Organic Electrolytic Systems and Room Temperature Molten Salts. Electrochim. Acta 1997, 42, 3–13. [Google Scholar] [CrossRef]
- Tsuda, T.; Stafford, G.R.; Hussey, C.L. Review—Electrochemical Surface Finishing and Energy Storage Technology with Room-Temperature Haloaluminate Ionic Liquids and Mixtures. J. Electrochem. Soc. 2017, 164, H5007–H5017. [Google Scholar] [CrossRef]
- Jiang, T.; Chollier Brym, M.J.; Dubé, G.; Lasia, A.; Brisard, G.M. Electrodeposition of Aluminium from Ionic Liquids: Part I—Electrodeposition and Surface Morphology of Aluminium from Aluminium Chloride (AlCl3)–1-Ethyl-3-Methylimidazolium Chloride ([EMIm]Cl) Ionic Liquids. Surf. Coat. Technol. 2006, 201, 1–9. [Google Scholar] [CrossRef]
- Abbott, A.P.; Qiu, F.; Abood, H.M.A.; Ali, M.R.; Ryder, K.S. Double Layer, Diluent and Anode Effects upon the Electrodeposition of Aluminium from Chloroaluminate Based Ionic Liquids. Phys. Chem. Chem. Phys. 2010, 12, 1862–1872. [Google Scholar] [CrossRef] [PubMed]
- Endres, F.; Bukowski, M.; Hempelmann, R.; Natter, H. Electrodeposition of Nanocrystalline Metals and Alloys from Ionic Liquids. Angew. Chem. Int. Ed. 2003, 42, 3428–3430. [Google Scholar] [CrossRef]
- Hurley, F.H.; WIer, T.P. The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature. J. Electrochem. Soc. 1951, 98, 207–212. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Q.; Zhang, S.; Lu, X. Effect of Nicotinamide on Electrodeposition of Al from Aluminium Chloride (AlCl3)-1-Butyl-3-Methylimidazolium Chloride ([Bmim]Cl) Ionic Liquids. J. Solid State Electrochem. 2014, 18, 257–267. [Google Scholar] [CrossRef]
- Berretti, E.; Giaccherini, A.; Martinuzzi, S.M.; Innocenti, M.; Schubert, T.J.S.; Stiemke, F.M.; Caporali, S. Aluminium Electrodeposition from Ionic Liquid: Effect of Deposition Temperature and Sonication. Materials 2016, 9, 719. [Google Scholar] [CrossRef]
- Tu, X.; Zhang, J.; Zhang, M.; Cai, Y.; Lang, H.; Tian, G.; Wang, Y. Electrodeposition of Aluminium Foils on Carbon Electrodes in Low Temperature Ionic Liquid. RSC Adv. 2017, 7, 14790–14796. [Google Scholar] [CrossRef] [Green Version]
- Stafford, G.R.; Tsuda, T.; Hussey, C.L. The Structure of Electrodeposited Aluminum Alloys from Chloroaluminate Ionic Liquids: Let’s Not Ignore the Temperature. ECS Meet. Abstr. 2014, MA2014-02, 1484. [Google Scholar] [CrossRef]
- Tang, J.; Azumi, K. Improvement of Al Coating Adhesive Strength on the AZ91D Magnesium Alloy Electrodeposited from Ionic Liquid. Surf. Coat. Technol. 2012, 208, 1–6. [Google Scholar] [CrossRef]
- Schaltin, S.; Ganapathi, M.; Binnemans, K.; Fransaer, J. Modeling of Aluminium Deposition from Chloroaluminate Ionic Liquids. J. Electrochem. Soc. 2011, 158, D634–D639. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, Q.; Chen, B.; Lu, X.; Zhang, S. Electrodeposition of Bright Al Coatings from 1-Butyl-3-Methylimidazolium Chloroaluminate Ionic Liquids with Specific Additives. J. Electrochem. Soc. 2015, 162, D320–D324. [Google Scholar] [CrossRef]
- Abdul-Sada, A.K.; Greenway, A.M.; Seddon, K.R.; Welton, T. A Fast Atom Bombardment Mass Spectrometric Study of Room-Temperature 1-Ethyl-3-Methylimidazolium Chloroaluminate(III) Ionic Liquids. Evidence for the Existence of the Decachlorotrialuminate(III) Anion. Org. Mass Spectrom. 1993, 28, 759–765. [Google Scholar] [CrossRef]
- Franzen, G.; Gilbert, B.P.; Pelzer, G.; DePauw, E. The Anionic Structure of Room-Temperature Organic Chloroaluminate Melts from Secondary Ion Mass Spectrometry. Org. Mass Spectrom. 1986, 21, 443–444. [Google Scholar] [CrossRef]
- Brown, L.C.; Hogg, J.M.; Swadźba-Kwaśny, M. Lewis Acidic Ionic Liquids. In Ionic Liquids II; Kirchner, B., Perlt, E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 185–224. ISBN 978-3-319-89794-3. [Google Scholar]
- Al Farisi, S.M.; Hertel, S.; Wiemer, M.; Otto, T. Aluminum Patterned Electroplating from AlCl3–[EMIm]Cl Ionic Liquid towards Microsystems Application. Micromachines 2018, 9, 589. [Google Scholar] [CrossRef] [Green Version]
- Fannin, A.A.; King, L.A.; Levisky, J.A.; Wilkes, J.S. Properties of 1,3-Dialkylimidazolium Chloride-Aluminum Chloride Ionic Liquids. 1. Ion Interactions by Nuclear Magnetic Resonance Spectroscopy. J. Phys. Chem. 1984, 88, 2609–2614. [Google Scholar] [CrossRef]
- Dymek, C.J.; Hussey, C.L.; Wilkes, J.S.; Øye, H.A. Thermodynamics of 1-Methyl-3-Ethylimidazolium Chloride—Aluminum Chloride Mixtures. ECS Proc. Vol. 1987, 7, 93–104. [Google Scholar] [CrossRef]
- Øye, H.A.; Jagtoyen, M.; Oksefjell, T.; Wilkes, J.S. Vapour Pressure and Thermodynamics of the System 1-Methyl-3-Ethyl-Imidazolium Chloride—Aluminium Chloride. Mater. Sci. Forum 1991, 73–75, 183–190. [Google Scholar] [CrossRef]
- Zhang, M.; Kamavarum, V.; Reddy, R.G. New Electrolytes for Aluminum Production: Ionic Liquids. J. Miner. Met. Mater. Soc. 2003, 55, 54–57. [Google Scholar] [CrossRef]
- Wilkes, J.S.; Levisky, J.A.; Wilson, R.A.; Hussey, C.L. Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy and Synthesis. Inorg. Chem. 1982, 21, 1263–1264. [Google Scholar] [CrossRef]
- Hussey, C.L.; Scheffler, T.B.; Wilkes, J.S.; Fannin, A.A. Chloroaluminate Equilibria in the Aluminum Chloride-1-Methyl-3-ethylimidazolium Chloride Ionic Liquid. J. Electrochem. Soc. 1986, 133, 1389–1391. [Google Scholar] [CrossRef]
- Karpinski, Z.J.; Osteryoung, R.A. Determination of Equilibrium Constants for the Tetrachloroaluminate Ion Dissociation in Ambient-Temperature Ionic Liquids. Inorg. Chem. 1984, 23, 1491–1494. [Google Scholar] [CrossRef]
- Fannin, A.A.; Floreani, D.A.; King, L.A.; Landers, J.S.; Piersma, B.J.; Stech, D.J.; Vaughn, R.L.; Wilkes, J.S.; Williams, J.L. Properties of 1,3-Dialkylimidazolium Chloride-Aluminum Chloride Ionic Liquids. 2. Phase Transitions, Densities, Electrical Conductivities, and Viscosities. J. Phys. Chem. 1984, 88, 2614–2621. [Google Scholar] [CrossRef]
- Bakkar, A.; Neubert, V. A New Method for Practical Electrodeposition of Aluminium from Ionic Liquids. Electrochem. Commun. 2015, 51, 113–116. [Google Scholar] [CrossRef]
- Pradhan, D.; Reddy, R.G. Mechanistic Study of Al Electrodeposition from EMIC–AlCl3and BMIC–AlCl3Electrolytes at Low Temperature. Mater. Chem. Phys. 2014, 143, 564–569. [Google Scholar] [CrossRef]
- Hou, Y.; Li, R.; Liang, J. Simultaneous Electropolishing and Electrodeposition of Aluminum in Ionic Liquid under Ambient Conditions. Appl. Surf. Sci. 2018, 434, 918–921. [Google Scholar] [CrossRef]
- Bakkar, A.; Neubert, V. Electrodeposition and Corrosion Characterisation of Micro- and Nano-Crystalline Aluminium from AlCl3/1-Ethyl-3-Methylimidazolium Chloride Ionic Liquid. Electrochim. Acta 2013, 103, 211–218. [Google Scholar] [CrossRef]
- Pulletikurthi, G.; Bödecker, B.; Borodin, A.; Weidenfeller, B.; Endres, F. Electrodeposition of Al from a 1-Butylpyrrolidine-AlCl3Ionic Liquid. Prog. Nat. Sci. Mater. Int. 2015, 25, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Nara, S.J.; Harjani, J.R.; Salunkhe, M.M. Friedel—Crafts Sulfonylation in 1-Butyl-3-Methylimidazolium Chloroaluminate Ionic Liquids. J. Org. Chem. 2001, 66, 8616–8620. [Google Scholar] [CrossRef]
- Zein El Abedin, S.; Giridhar, P.; Schwab, P.; Endres, F. Electrodeposition of Nanocrystalline Aluminium from a Chloroaluminate Ionic Liquid. Electrochem. Commun. 2010, 12, 1084–1086. [Google Scholar] [CrossRef]
- Elia, G.A.; Kravchyk, K.V.; Kovalenko, M.V.; Chacón, J.; Holland, A.; Wills, R.G.A. An Overview and Prospective on Al and Al-Ion Battery Technologies. J. Power Sources 2021, 481, 228870. [Google Scholar] [CrossRef]
- Elia, G.A.; Greco, G.; Kamm, P.H.; García-Moreno, F.; Raoux, S.; Hahn, R. Simultaneous X-Ray Diffraction and Tomography Operando Investigation of Aluminum/Graphite Batteries. Adv. Funct. Mater. 2020, 30, 2003913. [Google Scholar] [CrossRef]
- Zhao, Q.; Zachman, M.J.; Al Sadat, W.I.; Zheng, J.; Kourkoutis, L.F.; Archer, L. Solid Electrolyte Interphases for High-Energy Aqueous Aluminum Electrochemical Cells. Sci. Adv. 2018, 4, eaau8131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; Wang, J.; Zhang, X.; Chen, J.; Wang, Z.; Yang, T.; Liu, Z.; Liang, Y.; Wang, B.; Liu, S.; et al. A High-Energy Aqueous Aluminum-Manganese Battery. Adv. Funct. Mater. 2019, 29, 1905228. [Google Scholar] [CrossRef]
- Wu, C.; Gu, S.; Zhang, Q.; Bai, Y.; Li, M.; Yuan, Y.; Wang, H.; Liu, X.; Yuan, Y.; Zhu, N.; et al. Electrochemically Activated Spinel Manganese Oxide for Rechargeable Aqueous Aluminum Battery. Nat. Commun. 2019, 10, 73. [Google Scholar] [CrossRef]
- de Andrade, J.; Böes, E.S.; Stassen, H. A Force Field for Liquid State Simulations on Room Temperature Molten Salts: 1-Ethyl-3-Methylimidazolium Tetrachloroaluminate. J. Phys. Chem. B 2002, 106, 3546–3548. [Google Scholar] [CrossRef]
- de Andrade, J.; Böes, E.S.; Stassen, H. Alkyl Chain Size Effects on Liquid Phase Properties of 1-Alkyl-3-Methylimidazolium Tetrachloroaluminate Ionic Liquids—A Microscopic Point of View from Computational Chemistry. J. Phys. Chem. B 2009, 113, 7541–7547. [Google Scholar] [CrossRef]
- Øye, H.A.; Rytter, E.; Klæboe, P.; Cyvin, S.J. Raman Spectra of KCl-AlCl3Melts and Normal Coordinate Analysis of Al2Cl7-. Acta Chem. Scand. 1971, 25, 559–576. [Google Scholar] [CrossRef] [Green Version]
- Lockett, V.; Sedev, R.; Ralston, J.; Horne, M.; Rodopoulos, T. Differential Capacitance of the Electrical Double Layer in Imidazolium-Based Ionic Liquids: Influence of Potential, Cation Size, and Temperature. J. Phys. Chem. C 2008, 112, 7486–7495. [Google Scholar] [CrossRef]
- Vaughan, J.; Dreisinger, D. Potentiodynamic Polarization of Platinum and Aluminum in AlCl3-[P14,6,6,6]Cl Melts. ECS Trans. 2009, 16, 397–409. [Google Scholar] [CrossRef]
- Suarez, P.A.Z.; Selbach, V.M.; Dullius, J.E.L.; Einloft, S.; Piatnicki, C.M.S.; Azambuja, D.S.; de Souza, R.F.; Dupont, J. Enlarged Electrochemical Window in Dialkyl-Imidazolium Cation Based Room-Temperature Air and Water-Stable Molten Salts. Electrochim. Acta 1997, 42, 2533–2535. [Google Scholar] [CrossRef]
- Gordon, C.M.; Muldoon, M.J.; Wagner, M.; Hilgers, C.; Davis, J.H., Jr.; Wasserscheid, P. Synthesis and Purification. In Ionic Liquids in Synthesis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 7–55. ISBN 978-3-527-62119-4. [Google Scholar]
- Nelson, W.M. Green Solvents for Chemistry: Perspectives and Practice; Oxford University Press: Oxford, UK, 2003; ISBN 0-19-803576-4. [Google Scholar]
- Koronaios, P.; King, D.; Osteryoung, R.A. Acidity of Neutral Buffered 1-Ethyl-3-Methylimidazolium Chloride−AlCl3Ambient-Temperature Molten Salts. Inorg. Chem. 1998, 37, 2028–2032. [Google Scholar] [CrossRef]
- Dymek, C.J.; Williams, J.L.; Groeger, D.J.; Auborn, J.J. An Aluminum Acid-Base Concentration Cell Using Room Temperature Chloroaluminate Ionic Liquids. J. Electrochem. Soc. 1984, 131, 2887–2892. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Kar, M.; Pringle, J.M. Synthesis of Ionic Liquids. In Fundamentals of Ionic Liquids; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 81–102. ISBN 978-3-527-34003-3. [Google Scholar]
- Ismail, A.S. Nano-Sized Aluminum Coatings from Aryl-Substituted Imidazolium Cation Based Ionic Liquid. Egypt. J. Pet. 2016, 25, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Lai, P.K.; Skyllas-Kazacos, M. Electrodeposition of Aluminium in Aluminium Chloride/1-Methyl-3-Ethylimidazolium Chloride. J. Electroanal. Chem. Interfacial Electrochem. 1988, 248, 431–440. [Google Scholar] [CrossRef]
- Zhu, G.; Angell, M.; Pan, C.-J.; Lin, M.-C.; Chen, H.; Huang, C.-J.; Lin, J.; Achazi, A.J.; Kaghazchi, P.; Hwang, B.-J.; et al. Rechargeable Aluminum Batteries: Effects of Cations in Ionic Liquid Electrolytes. RSC Adv. 2019, 9, 11322–11330. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.-C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D.-Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B.-J.; et al. An Ultrafast Rechargeable Aluminium-Ion Battery. Nature 2015, 520, 324–328. [Google Scholar] [CrossRef]
- Nicholson, R.S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Paul, H.J.; Leddy, J. Direct Determination of the Transfer Coefficient from Cyclic Voltammetry: Isopoints as Diagnostics. Anal. Chem. 1995, 67, 1661–1668. [Google Scholar] [CrossRef]
- Wang, J. Analytical Electrochemistry, 3rd ed.; Wiley: New York, NY, USA, 2006; ISBN 978-0-471-67879-3. [Google Scholar]
- Brett, C.M.A.; Brett, A.M.O. Electrochemistry Principles, Methods, and Applications; Oxford University Press: Oxford, UK, 1993; ISBN 978-0-19-855388-5. [Google Scholar]
- Marsden, K.C.; Pesic, B. Evaluation of the Electrochemical Behavior of CeCl3 in Molten LiCl-KCl Eutectic Utilizing Metallic Ce as an Anode. J. Electrochem. Soc. 2011, 158, F111. [Google Scholar] [CrossRef]
- Serrano, K.; Taxil, P. Electrochemical Nucleation of Uranium in Molten Chlorides. J. Appl. Electrochem. 1999, 29, 505–510. [Google Scholar] [CrossRef]
- Branco, P.D.; Mostany, J.; Borrás, C.; Scharifker, B.R. The Current Transient for Nucleation and Diffusion-Controlled Growth of Spherical Caps. J. Solid State Electrochem. 2009, 13, 565–571. [Google Scholar] [CrossRef]
- Rodríguez-Clemente, E.; Manh, T.L.; Guinto-Pano, C.E.; Romero-Romo, M.; Mejía-Caballero, I.; Morales-Gil, P.; Palacios-González, E.; Ramírez-Silva, M.T.; Palomar-Pardavé, M. Aluminum Electrochemical Nucleation and Growth onto a Glassy Carbon Electrode from a Deep Eutectic Solvent. J. Electrochem. Soc. 2019, 166, D3035–D3041. [Google Scholar] [CrossRef]
Reaction | * ∆H0 /kJ mol−1 | * ∆S0 /J mol−1 K−1 | K (30 °C) | K (110 °C) |
---|---|---|---|---|
1 | 69.547 | −172.17 | 1.04 × 10−21 | 3.32 × 10−19 |
2 | 40.940 | 37.89 | 8.34 × 10−6 | 2.49 × 10−4 |
3 | 25.574 | 36.78 | 3.25 × 10−3 | 2.71 × 10−2 |
4 | 25.704 | 47.90 | 1.18 × 10−2 | 9.92 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Jiang, J.; Zhao, H. Electrodeposition of Aluminum in the 1-Ethyl-3-Methylimidazolium Tetrachloroaluminate Ionic Liquid. Electrochem 2021, 2, 185-196. https://doi.org/10.3390/electrochem2020013
Shi M, Jiang J, Zhao H. Electrodeposition of Aluminum in the 1-Ethyl-3-Methylimidazolium Tetrachloroaluminate Ionic Liquid. Electrochem. 2021; 2(2):185-196. https://doi.org/10.3390/electrochem2020013
Chicago/Turabian StyleShi, Meng, Junhua Jiang, and Haiyan Zhao. 2021. "Electrodeposition of Aluminum in the 1-Ethyl-3-Methylimidazolium Tetrachloroaluminate Ionic Liquid" Electrochem 2, no. 2: 185-196. https://doi.org/10.3390/electrochem2020013
APA StyleShi, M., Jiang, J., & Zhao, H. (2021). Electrodeposition of Aluminum in the 1-Ethyl-3-Methylimidazolium Tetrachloroaluminate Ionic Liquid. Electrochem, 2(2), 185-196. https://doi.org/10.3390/electrochem2020013