Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack
Abstract
:1. Introduction
2. Methodology
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, Y.; Fan, Y.; Chu, Y.; Ling, C.; Tan, X.; Yang, S. Experimental and Numerical Study on Thermal and Energy Management of a Fast-Charging Lithium-Ion Battery Pack with Air Cooling. J. Energy Eng. 2019, 145, 04019030. [Google Scholar] [CrossRef]
- Erb, D.C.; Kumar, S.; Carlson, E.; Ehrenberg, I.M.; Sarma, S.E. Analytical methods for determining the effects of lithium-ion cell size in aligned air-cooled battery packs. J. Energy Storage 2017, 10, 39–47. [Google Scholar] [CrossRef]
- Cheng, L.; Garg, A.; Jishnu, A.K.; Gao, L. Surrogate based multi-objective design optimization of lithium-ion battery air-cooled system in electric vehicles. J. Energy Storage 2020, 31, 101645. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, F.; Zhou, H.; Liu, Y. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module. Int. J. Heat Mass Transf. 2020, 161, 120307. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, C.; Zhu, J.E.H.; Chen, J.; Wen, M.; Yin, H. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Appl. Therm. Eng. 2018, 142, 10–29. [Google Scholar] [CrossRef]
- Seo, J.H.; Patil, M.S.; Kim, D.W.; Bang, Y.M.; Lee, M.Y. Numerical Study on the Cooling Performances of Various Cooling Methods for Laminated Type Battery. In Proceedings of the 1st ACTS—Asian Conference on Thermal Sciences, Jeju Island, Korea, 26–30 March 2017. [Google Scholar]
- Saw, L.H.; Ye, Y.; Tay, A.A.O.; Chong, W.T.; Kuan, S.H.; Yew, M.C. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Appl. Energy 2016, 177, 783–792. [Google Scholar] [CrossRef]
- Ling, Z.; Cao, J.; Zhang, W.; Zhang, Z.; Fang, X.; Gao, X. Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology. Appl. Energy 2018, 228, 777–788. [Google Scholar] [CrossRef]
- Panchal, S.; Khasow, R.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lith-ium-ion battery. Appl. Therm. Eng. 2017, 122, 80–90. [Google Scholar] [CrossRef]
- Madani, S.S.; Schaltz, E.; Kær, S.K. Thermal Modelling of a Lithium Titanate Oxide Battery. ECS Trans. 2018, 87, 315–326. [Google Scholar] [CrossRef]
- Ye, Y.; Saw, L.H.; Shi, Y.; Tay, A.A.O. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl. Therm. Eng. 2015, 86, 281–291. [Google Scholar] [CrossRef]
- Pesaran, A.; Santhanagopalan, S.; Kim, G. Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation); Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. [Google Scholar]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, J.; Kim, G.H.; Yang, C.; Pesaran, A. Comparison of different cooling methods for lithium ion battery cells. Appl. Therm. Eng. 2016, 94, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Oh, J.; Lee, H. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 2019, 149, 192–212. [Google Scholar] [CrossRef]
- Stroe, A.-I. Analysis of Performance and Degradation for Lithium Titanate Oxide Batteries Stroe. Ph.D. Thesis, Aalborg Universitet, Esbjerg, Denmark, 2018. [Google Scholar]
- Kim, G.-H.; Pesaran, A.A. Battery thermal management system design modeling. In Proceedings of the 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Conference and Exhibition (EVS-22), Yokohama, Japan, 23–28 October 2006. [Google Scholar]
39 A | 52 A | 65 A | |
---|---|---|---|
A1 | 1972 | 2922 | 4519 |
B1 | 1590 | 967.1 | 724.7 |
C1 | 468.2 | 398.5 | 286.7 |
A2 | 1239 | 1116 | 1882 |
B2 | 900.2 | 1603 | 1066 |
C2 | 382.9 | 841.8 | 443.2 |
A3 | 316.2 | 1252 | 1657 |
B3 | 2334 | 454.6 | 1613 |
C3 | 286.6 | 234.3 | 723.5 |
A4 | 995.6 | 1035 | 2806 |
B4 | 2707 | 2818 | 341.8 |
C4 | 1147 | 1640 | 211.6 |
A5 | 142.2 | −61.15 | 1218 |
B5 | 4275 | 3434 | 2509 |
C5 | 912.3 | 154.4 | 1152 |
A6 | −18.58 | −38.59 | −44.68 |
B6 | 5325 | 4207 | 3343 |
C6 | 60.5 | 142.3 | 229.3 |
A7 | 327.1 | 674.7 | 1060 |
B7 | 6688 | 4821 | 3762 |
C7 | 4856 | 4333 | 2117 |
A8 | 493.8 | 91.83 | 616.7 |
B8 | 4579 | 4907 | 5739 |
C8 | 1999 | 30.81 | 4784 |
Geometrical Parameters | The total thickness of the lithium titanate oxide battery cell | 9 mm |
The vertical distance between the lithium titanate oxide batteries | 4.5 mm | |
The horizontal distance between the lithium titanate oxide batteries and boundaries | 12 mm | |
Battery Physical Parameters | Along-plane thermal conductivity of the lithium titanate oxide battery | 38 W/m·k |
Specific heat capacity of the lithium titanate oxide battery | 1196.8 J/kg·k | |
Through-plane thermal conductivity of the lithium titanate oxide battery | 0.71 W/m·k | |
Density of the lithium titanate oxide battery | 1974.01 kg/m3 | |
Pack Parameters | The nominal voltage of the lithium titanate oxide battery | 2.26 V |
Number of lithium titanate oxide batteries in the pack | 20 | |
Lithium titanate oxide battery cell surface area | 26,316 mm2 | |
The capacity of each lithium titanate oxide battery | 13 Ah | |
Physical Parameters of the Coolant | Heat transfer coefficient for the cooling media | 25–250 W/m2k |
Density of the air | 1.225 kg/m3 | |
Specific heat capacity of the air | 1006 J/kg/k | |
Thermal conductivity of the air | 0.0242 W/m/k | |
Kinematic viscosity of the air | 1.46 × 10−5 m2/s | |
The density of the dielectric mineral oil | 924.1 kg/m3 | |
Specific heat capacity of the dielectric mineral oil | 1900 J/kg/k | |
Thermal conductivity of the dielectric mineral oil | 0.13 W/m/k | |
Kinematic viscosity of the dielectric mineral oil | 5.6 × 10−5 m2/s | |
Density of the dielectric water/glycol (50/50) | 1069 kg/m3 | |
Specific heat capacity of the dielectric water/glycol (50/50) | 3323 J/kg/k | |
Thermal conductivity of the dielectric water/glycol (50/50) | 0.3892 W/m/k | |
Kinematic viscosity of the dielectric water/glycol (50/50) | 2.58 × 10−6 m2/s | |
Environmental Parameters | Ambient temperature °C | 30 °C, 20 °C |
The inlet temperature of the cooling media | 30 °C, 20 °C | |
Inlet air velocity | 20 m/s | |
Inlet Water/glycol (50/50) velocity | 0.08 m/s | |
Inlet dielectric mineral oil velocity | 0.08 m/s |
Configuration | A | B | C | |
---|---|---|---|---|
Inlet | Outlet | - | ||
Inlet | Outlet | - | ||
Inlet | Outlet | - | ||
Inlet | Outlet | Outlet |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madani, S.S.; Schaltz, E.; Kær, S.K. Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack. Electrochem 2021, 2, 50-63. https://doi.org/10.3390/electrochem2010005
Madani SS, Schaltz E, Kær SK. Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack. Electrochem. 2021; 2(1):50-63. https://doi.org/10.3390/electrochem2010005
Chicago/Turabian StyleMadani, Seyed Saeed, Erik Schaltz, and Søren Knudsen Kær. 2021. "Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack" Electrochem 2, no. 1: 50-63. https://doi.org/10.3390/electrochem2010005
APA StyleMadani, S. S., Schaltz, E., & Kær, S. K. (2021). Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack. Electrochem, 2(1), 50-63. https://doi.org/10.3390/electrochem2010005