Fault Detection in Offshore Structures: Influence of Sensor Number, Placement and Quality
Abstract
:1. Introduction
2. Problem Description
2.1. System Kinematics
2.2. Rope Fault Estimation Using EKF
3. Optimal Sensor Placement for Rope Fault Detection Using EKF
4. Influence of Sensor Defects on the Reliability of Rope Fault Detection
4.1. Sensor Defects
4.2. Simulation Settings
4.3. Influence of the Distance between the Platforms with the Defect Sensors and the Platforms with the Rope Fault
5. Results of Sensor Defects on the Reliability of Rope Fault Detection by the EKF
5.1. Influence of Sensor Precision Degradation, Sensor Gain and Sensor Bias Defects on Rope Fault Detection
5.2. The Influence of the Distance between Defect Sensors and Rope Faults on the Rope Fault Detection Reliability
5.3. The Influence of the amount of Defect Sensors Per Platform on the Rope Fault Detection Reliability
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
KF | Kalman Filter |
EKF | Extended Kalman Filter |
MBD | Multi body dynamics |
References
- Li, D.; Wang, Y.; Wang, J.; Wang, C.; Duan, Y. Recent advances in sensor fault diagnosis: A review. Sens. Actuators Phys. 2020, 309, 111990. [Google Scholar] [CrossRef]
- Prabowo, A.R.; Tuswan, T.; Ridwan, R. Advanced Development of Sensors’ Roles in Maritime-Based Industry and Research: From Field Monitoring to High-Risk Phenomenon Measurement. Appl. Sci. 2021, 11, 3954. [Google Scholar] [CrossRef]
- Von Bock und Polach, R.U.; Ehlers, S. Heave and pitch motions of a ship in model ice: An experimental study on ship resistance and ice breaking pattern. Cold Reg. Sci. Technol. 2011, 68, 49–59. [Google Scholar] [CrossRef]
- Jang, J.; Choi, S.H.; Ahn, S.M.; Kim, B.; Seo, J.S. Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship. Int. J. Nav. Archit. Ocean. Eng. 2014, 6, 363–379. [Google Scholar] [CrossRef] [Green Version]
- Drewing, S.; Witkowski, K. Spectral Analysis of Torsional Vibrations Measured by Optical Sensors, as a Method for Diagnosing Injector Nozzle Coking in Marine Diesel Engines. Sensors 2021, 21, 775. [Google Scholar] [CrossRef] [PubMed]
- Penttilä, P.; Ruponen, P. Use of Level Sensors in Breach Estimation for a Damaged Ship. In Proceedings of the 5th International Conference on Collision and Grounding of Ships, Espoo, Finland, 14–16 June 2010; Volume 505, p. 2. [Google Scholar]
- Tagesson, T.; Mastepanov, M.; Mölder, M.; Tamstorf, M.P.; Eklundh, L.; Smith, B.; Sigsgaard, C.; Lund, M.; Ekberg, A.; Falk, J.M.; et al. Modelling of growing season methane fluxes in a high-Arctic wet tundra ecosystem 1997–2010 using in situ and high-resolution satellite data. Tellus Chem. Phys. Meteorol. 2013, 65, 19722. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, J.; Oechel, W.; Gioli, B.; Moreaux, V.; Murphy, P.; Burba, G.; Zona, D. Impact of different eddy covariance sensors, site set-up, and maintenance on the annual balance of CO2 and CH4 in the harsh Arctic environment. Agric. For. Meteorol. 2016, 228–229, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Tian, X.; Peng, T.; Luo, Y. A review of the state-of-the-art developments in the field monitoring of offshore structures. Ocean. Eng. 2018, 147, 148–164. [Google Scholar] [CrossRef]
- Kim, B.; Min, C.; Kim, H.; Cho, S.; Oh, J.; Ha, S.H.; Yi, J.h. Structural Health Monitoring with Sensor Data and Cosine Similarity for Multi-Damages. Sensors 2019, 19, 3047. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Maheshwari, M.; Yang, Y.; Xiao, W. Selection and Characterization of Packaged FBG Sensors for Offshore Applications. Sensors 2018, 18, 3963. [Google Scholar] [CrossRef] [Green Version]
- Nichols, J. Structural health monitoring of offshore structures using ambient excitation. Appl. Ocean. Res. 2003, 25, 101–114. [Google Scholar] [CrossRef]
- Beko, M.; Ivosevic, S.; Dlabac, T. Application of Sensors in the Corrosion Monitoring of the Ship’s Structural Parts. In Proceedings of the 2021 25th International Conference on Information Technology (IT), Zabljak, Montenegro, 16–20 February 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Inaudi, D.; Glisic, B.; Gasparoni, F.; Cenedese, S.; Zecchin, M. Strain sensors for deepwater applications. In Proceedings of the 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure, Vancouver, BC, Canada, 13–16 November 2007. [Google Scholar]
- Ge, M.; Kannala, J.; Li, S.; Maheshwari, H.; Campbell, M. A New Riser Fatigue Monitoring Methodology Based on Measured Accelerations. In Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering OMAE2014, San Francisco, CA, USA, 8–13 June 2014; p. V06AT04A063. [Google Scholar] [CrossRef]
- Liu, Y.; Fontanella, A.; Wu, P.; Ferrari, R.; Wingerden, J.W. Fault Detection of the Mooring system in Floating Offshore Wind Turbines based on the Wave-excited Linear Model. J. Phys. Conf. Ser. 2020, 1618, 022049. [Google Scholar] [CrossRef]
- Hassani, V.; Pascoal, A.; Sørensen, A. Detection of mooring line failures using Dynamic Hypothesis Testing. Ocean. Eng. 2018, 159, 496–503. [Google Scholar] [CrossRef]
- Auger, F.; Hilairet, M.; Guerrero, J.M.; Monmasson, E.; Orlowska-Kowalska, T.; Katsura, S. Industrial Applications of the Kalman Filter: A Review. IEEE Trans. Ind. Electron. 2013, 60, 5458–5471. [Google Scholar] [CrossRef] [Green Version]
- Moreno, V.M.; Pigazo, A. Kalman Filter; IntechOpen: Rijeka, Croatia, 2009. [Google Scholar] [CrossRef]
- Dan, S. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Imai, H.; Yun, C.B.; Maruyama, O.; Shinozuka, M. Fundamentals of system identification in structural dynamics. Probabilistic Eng. Mech. 1989, 4, 162–173. [Google Scholar] [CrossRef]
- Brown, S.D. The Kalman filter in analytical chemistry. Anal. Chim. Acta 1986, 181, 1–26. [Google Scholar] [CrossRef]
- Saho, K. Kalman Filter for Moving Object Tracking: Performance Analysis and Filter Design. In Kalman Filters; de Oliveira Serra, G.L., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 12. [Google Scholar] [CrossRef] [Green Version]
- Van De Wal, M.; De Jager, B. A review of methods for input/output selection. Automatica 2001, 37, 487–510. [Google Scholar] [CrossRef] [Green Version]
- Flikkema, M.; Waals, O. Space@Sea the Floating Solution. Front. Mar. Sci. 2019, 6, 553. [Google Scholar] [CrossRef]
- Schultz-Zehden, A.; Lukic, I.; Onwona, J.; Altvater, S.; Bamlett, R.; Barbati, A.; Barbanti, M.; Buck, B.H.; Calado, H.; Varona, M.C.; et al. Ocean Multi-Use Action Plan. In Proceedings of the MUSES (Multi-Use in European Seas); Multi-Use in European Seas: Edingburgh, Scotland, 2018. [Google Scholar]
- Souravlias, D.; Dafnomilis, I.; Ley, J.; Assbrock, G.; Duinkerken, M.B.; Negenborn, R.R.; Schott, D.L. Design Framework for a Modular Floating Container Terminal. Front. Mar. Sci. 2020, 7, 545637. [Google Scholar] [CrossRef]
- Tockner, A.; Blümel, B.; Ellermann, K. Fault Detection in Modular Offshore Platform Connections Using Extended Kalman Filter. Front. Built Environ. 2021, 7, 658363. [Google Scholar] [CrossRef]
- Kim, Y.; Bai, J.W.; Albano, L. Fragility estimates of smart structures with sensor faults. Smart Mater. Struct. 2013, 22, 5012. [Google Scholar] [CrossRef]
- Odgaard, P.; Stoustrup, J.; Nielsen, R.; Damgaard, C. Observer Based Detection of Sensor Faults in Wind Turbines. In Proceedings of the European Wind Energy Conference, Marseille, France, 16–19 March 2009; Volume 7. [Google Scholar]
- Ni, K.; Nithya, R.; Chehade, M.; Balzano, L.; Nair, S.; Zahedi, S.; Kohler, E.; Pottie, G.; Hansen, M.; Srivastava, M. Sensor Network Data Fault Types. ACM Trans. Sen. Netw. 2009, 5, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Pierson, W.J., Jr.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
- Spanos, P.T. ARMA Algorithms for Ocean Wave Modeling. J. Energy Resour. Technol. 1983, 105, 300–309. [Google Scholar] [CrossRef]
- Ma, S.L.; Jiang, S.F.; Li, J. Structural damage detection considering sensor performance degradation and measurement noise effect. Measurement 2019, 131, 431–442. [Google Scholar] [CrossRef]
- Yi, T.H.; Huang, H.B.; Li, H.N. Development of sensor validation methodologies for structural health monitoring: A comprehensive review. Measurement 2017, 109, 200–214. [Google Scholar] [CrossRef]
- Lili, L.; Liu, G.; Zhang, L.; Li, Q. Sensor fault detection with generalized likelihood ratio and correlation coefficient for Bridge SHM. J. Sound Vib. 2019, 442, 445–458. [Google Scholar] [CrossRef]
Sensor Setting | Correct Fault Indication in % | Rope Fault Detection Time s |
---|---|---|
A | 17 | 531 |
B | 100 | 107 |
C | 100 | 288 |
D | 100 | 142 |
E | 0 | - |
F | 100 | 77 |
G | 82 | 387 |
H | 74 | 419 |
I | 100 | 100 |
J | 99 | 150 |
Kind of Sensor Defect | Parameter | Parameter Values |
---|---|---|
Precision degradation | Variance of the added noise in | 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.75, 0.8, 0.9, 0.95, 1 |
Gain defect | Gain factor | 0.5, 0.6, 0.65, 0.7, 0.725, 0.5, 0.75, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95, 1 |
Bias defect | Added acceleration in | 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5 |
Number of Defect Sensors | ||||
Sensors setting B | 1 | 2 | 4 | 8 |
Sensors setting F | 1 | 2 | 5 | 10 |
Number of simulations | ||||
dist-0 | 2 | 2 | 1 | 1 |
dist-1 | 2 | 2 | 1 | 1 |
dist-2 | 2 | 2 | 1 | 1 |
dist-3 | 2 | 2 | 1 | 1 |
dist-4 | 2 | 2 | 1 | 1 |
dist-var | - | - | 2 | 2 |
dist-com-0 | - | - | 1 | 1 |
dist-com-2 | - | - | 1 | 1 |
dist-com-4 | - | - | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tockner, A.; Lei, J.; Ellermann, K. Fault Detection in Offshore Structures: Influence of Sensor Number, Placement and Quality. Appl. Mech. 2022, 3, 757-778. https://doi.org/10.3390/applmech3030045
Tockner A, Lei J, Ellermann K. Fault Detection in Offshore Structures: Influence of Sensor Number, Placement and Quality. Applied Mechanics. 2022; 3(3):757-778. https://doi.org/10.3390/applmech3030045
Chicago/Turabian StyleTockner, Andreas, Jixiang Lei, and Katrin Ellermann. 2022. "Fault Detection in Offshore Structures: Influence of Sensor Number, Placement and Quality" Applied Mechanics 3, no. 3: 757-778. https://doi.org/10.3390/applmech3030045
APA StyleTockner, A., Lei, J., & Ellermann, K. (2022). Fault Detection in Offshore Structures: Influence of Sensor Number, Placement and Quality. Applied Mechanics, 3(3), 757-778. https://doi.org/10.3390/applmech3030045