Molecular Structure of M(N13) Compounds with 12-Membered Nitrogen-Containing Cycle and Axial Nitrogen Atom (M = Mn, Fe): Quantum-Chemical Design by DFT Method
Abstract
:1. Introduction
2. Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mikhailov, O.V.; Chachkov, D.V. Twelve-Nitrogen-Atom Cyclic Structure Stabilized by 3d-Element Atoms: Quantum Chemical Modeling. Int. J. Mol. Sci. 2022, 23, 6560. [Google Scholar] [CrossRef] [PubMed]
- Klapötke, T.M.; Harcourt, R.D. The interconversion of N12 to N8 and two equivalents of N2. J. Mol. Struct. (Theochem) 2001, 541, 237–242. [Google Scholar] [CrossRef]
- Olah, G.A.; Prakash, G.K.S.; Rasul, G. N62+ and N42+ Dications and Their N12 and N10 Azido Derivatives: DFT/GIAO-MP2 Theoretical Studies. J. Am. Chem. Soc. 2001, 123, 3308–3310. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.S.; Zhao, J.F. Theoretical Study of Potential Energy Surfaces for N12 Clusters. J. Phys. Chem. A 2002, 106, 5367–5372. [Google Scholar] [CrossRef]
- Bruney, L.Y.; Bledson, T.M.; Strout, D.L. What Makes an N12 Cage Stable? Inorg. Chem. 2003, 42, 8117–8120. [Google Scholar] [CrossRef]
- Samartzis, P.C.; Woodtke, A.M. All-nitrogen chemistry: How far are we from N60? Intern. Revs. Phys. Chem. 2006, 25, 1952–2005. [Google Scholar] [CrossRef]
- Greschner, M.J.; Zhang, M.; Majumdar, A.; Liu, H.; Peng, F.; Tse, J.S.; Yao, Y. A New Allotrope of Nitrogen as High-Energy Density Material. J. Phys. Chem. A 2016, 120, 2920–2925. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. Molecular structures and thermodynamics of stable N4, N6 and N8 neutral polynitrogens according to data of QCISD(T)/TZVP method. Chem. Phys. Lett. 2020, 753, 137594. [Google Scholar] [CrossRef]
- Chachkov, D.V.; Mikhailov, O.V. Tetra-, hexa-, and octanitrogen molecules: A quantum chemical design and thermodynamic properties. Russ. Chem. Bull. 2020, 69, 2067–2072. [Google Scholar] [CrossRef]
- Mikhailov, O.V. Molecular and Electronic Structures of Neutral Polynitrogens: Review on the Theory and Experiment in 21st Century. Int. J. Mol. Sci. 2022, 23, 2841. [Google Scholar] [CrossRef]
- Straka, M. N6 ring as a planar hexagonal ligand in novel M(η6-N6) species. Chem. Phys. Lett. 2002, 358, 531–536. [Google Scholar] [CrossRef]
- Choi, C.; Yoo, H.-W.; Goh, E.M.; Cho, S.G.; Jung, Y.S. Ti(N5)4 as a Potential Nitrogen-Rich Stable High-Energy Density Material. J. Phys. Chem. A 2016, 120, 4249–4255. [Google Scholar] [CrossRef] [PubMed]
- Brathwaite, A.D.; Abbott-Lyon, H.L.; Duncan, M.A. Distinctive Coordination of CO vs N2 to Rhodium Cations: An Infrared and Computational Study. J. Phys. Chem. A 2016, 120, 7659–7670. [Google Scholar] [CrossRef]
- Ding, K.; Xu, H.; Yang, Y.; Li, T.; Chen, Z.; Ge, Z.; Zhu, W.; Zheng, W. Mass Spectrometry and Theoretical Investigation of VNn+ (n = 8, 9, and 10) Clusters. J. Phys. Chem. A 2018, 122, 4687–4695. [Google Scholar] [CrossRef] [PubMed]
- Bykov, M.; Bykova, E.; Koemets, E.; Fedotenko, T.; Aprilis, G.; Glazyrin, K.; Liermann, H.-P.; Ponomareva, A.V.; Tidholm, J.; Tasnadi, F.; et al. High-pressure synthesis of a nitrogen-rich inclusion compound ReN8 xN2 with conjugated polymeric nitrogen chains. Angew. Chem. Int. Ed. 2018, 57, 9048–9053. [Google Scholar] [CrossRef] [Green Version]
- Ding, K.; Chen, H.; Xu, H.; Yang, B.; Ge, Z.; Lu, C.; Zheng, W. Identification of octahedral coordinated ZrN12+ cationic clusters by mass spectrometry and structure searches. Dalton Trans. 2021, 50, 10187–10192. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Revs. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Revs. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef] [Green Version]
- Medvedev, M.G.; Bushmarinov, I.S.; Sun, J.; Perdew, J.P.; Lyssenko, K.A. Density functional theory is straying from the path toward the exact functional. Science 2017, 355, 49–52. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. DFT Quantum-Chemical Modeling Molecular Structures of Cobalt Macrocyclic Complexes with Porphyrazine or Its Benzo-Derivatives and Two Oxygen Acido Ligands. Int. J. Mol. Sci. 2020, 21, 9085. [Google Scholar] [CrossRef]
- Hoe, W.M.; Cohen, A.; Handy, N.C. Assessment of a new local exchange functional OPTX. Chem. Phys. Lett. 2001, 341, 319–328. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulsen, H.; Duelund, L.; Winkler, H.; Toftlund, H.; Trautwein, A.X. Free Energy of Spin-Crossover Complexes Calculated with Density Functional Methods. Inorg. Chem. 2001, 40, 2201–2203. [Google Scholar] [CrossRef]
- Swart, M.; Groenhof, A.R.; Ehlers, A.W.; Lammertsma, K. Validation of Exchange—Correlation Functionals for Spin States of Iron Complexes. J. Phys. Chem. A 2004, 108, 5479–5483. [Google Scholar] [CrossRef]
- Swart, M.; Ehlers, A.W.; Lammertsma, K. Performance of the OPBE exchange-correlation functional. Mol. Phys. 2004, 102, 2467–2474. [Google Scholar] [CrossRef]
- Swart, M. Metal–ligand bonding in metallocenes: Differentiation between spin state, electrostatic and covalent bonding. Inorg. Chim. Acta 2007, 360, 179–189. [Google Scholar] [CrossRef]
- Møller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503–506. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, UK, 2009; Available online: https://www.scienceopen.com/document?vid=7625a2b3-85a4-4746-8a93-fb3335021944 (accessed on 1 January 2023).
- Cioslowski, J. A New Population Analysis Based on Atomic Polar Tensors. J. Am. Chem. Soc. 1989, 111, 8333–8336. [Google Scholar] [CrossRef]
- Weinhold, F.; Landis, C.R.; Glendening, E.D. What is NBO analysis and how is it useful? Int. Rev. Phys. Chem. 2016, 35, 399–440. [Google Scholar] [CrossRef]
- Ochterski, J.W. Thermochemistry in Gaussian; Gaussian, Inc.: Wallingford, CT, USA, 2000. [Google Scholar]
- Mardirossian, N.; Head-Gordon, M. Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals. Mol. Phys. 2017, 115, 2315–2372. [Google Scholar] [CrossRef] [Green Version]
Mn(N13) | Fe(N13) | |||||||
---|---|---|---|---|---|---|---|---|
Structural Parameter | B3PW91/ TZVP | OPBE/ TZVP | M06/ TZVP | M062X/ Def2TZVP | B3PW91/ TZVP | OPBE/ TZVP | M06/ TZVP | M062X/ Def2TZVP |
M–N bond lengths in the MN4 chelate node, pm | ||||||||
M1N1 | 188.4 | 188.5 | 190.7 | 191.1 | 183.0 | 182.6 | 184.5 | 184.9 |
M1N4 | 188.4 | 188.5 | 189.3 | 191.1 | 183.0 | 182.6 | 183.1 | 188.8 |
M1N7 | 188.4 | 188.5 | 189.3 | 191.1 | 183.0 | 182.6 | 183.1 | 188.8 |
M1N10 | 188.4 | 188.5 | 190.7 | 191.1 | 183.0 | 182.6 | 184.5 | 184.9 |
M–N bond lengths between M and nitride N atom, pm | ||||||||
M1N13 | 151.0 | 152.5 | 150.9 | 147.3 | 150.9 | 151.5 | 150.0 | 154.4 |
Nitrogen-nitrogen bond lengths in macrocycle, pm | ||||||||
N1N2 | 134.9 | 134.9 | 138.4 | 142.1 | 134.5 | 134.9 | 138.8 | 136.2 |
N2N3 | 127.2 | 128.2 | 125.9 | 123.4 | 127.5 | 128.2 | 125.8 | 123.8 |
N3N4 | 134.9 | 134.9 | 134.0 | 142.1 | 134.5 | 134.9 | 134.0 | 142.9 |
N4N5 | 134.9 | 134.9 | 137.6 | 129.9 | 134.5 | 134.9 | 137.6 | 130.0 |
N5N6 | 127.2 | 128.2 | 124.6 | 132.3 | 127.5 | 128.2 | 124.6 | 131.3 |
N6N7 | 134.9 | 134.9 | 137.6 | 130.0 | 134.5 | 134.9 | 137.6 | 130.0 |
N7N8 | 134.9 | 134.9 | 134.0 | 142.1 | 134.5 | 134.9 | 134.0 | 142.9 |
N8N9 | 127.2 | 128.2 | 125.9 | 123.4 | 127.5 | 128.2 | 125.8 | 123.8 |
N9N10 | 134.9 | 134.9 | 138.4 | 142.1 | 134.5 | 134.9 | 138.8 | 136.2 |
N10N11 | 134.9 | 134.9 | 132.0 | 129.9 | 134.5 | 134.9 | 131.4 | 137.9 |
N11N12 | 127.2 | 128.2 | 129.4 | 132.3 | 127.5 | 128.2 | 129.9 | 124.2 |
N12N1 | 134.9 | 134.9 | 132.0 | 130.0 | 134.5 | 134.9 | 131.4 | 137.9 |
Bond angles in the MN4 grouping, deg | ||||||||
N1M1N4 | 76.3 | 76.0 | 76.0 | 74.6 | 77.7 | 77.7 | 77.4 | 76.2 |
N4M1N7 | 76.3 | 76.0 | 75.7 | 75.6 | 77.7 | 77.7 | 77.1 | 78.0 |
N7M1N10 | 76.3 | 76.0 | 76.0 | 74.6 | 77.7 | 77.7 | 77.4 | 76.2 |
N10M1N1 | 76.3 | 76.0 | 76.3 | 75.6 | 77.7 | 77.7 | 78.0 | 76.0 |
Bond angles sum (BAS), deg | 305.2 | 304.0 | 304.0 | 300.4 | 310.8 | 310.8 | 309.9 | 306.4 |
Deviation from coplanarity, deg | 54.8 | 56.0 | 56.0 | 59.6 | 49.2 | 49.2 | 50.1 | 53.6 |
Non-bond angles in the MN4 grouping, deg | ||||||||
N1N4N7 | 90.0 | 90.0 | 90.4 | 90.0 | 90.0 | 90.0 | 90.5 | 88.8 |
N4N7N10 | 90.0 | 90.0 | 90.4 | 90.0 | 90.0 | 90.0 | 90.5 | 88.8 |
N7N10N1 | 90.0 | 90.0 | 89.6 | 90.0 | 90.0 | 90.0 | 89.5 | 91.2 |
N10N1N4 | 90.0 | 90.0 | 89.6 | 90.0 | 90.0 | 90.0 | 89.5 | 91.2 |
Non-bond angles sum (NBAS), deg | 360.0 | 360.0 | 360.0 | 360.0 | 360.0 | 360.0 | 360.0 | 360.0 |
Deviation from coplanarity, deg | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bond angles in 5-membered cycles, deg | ||||||||
M1N1N2 | 117.8 | 118.2 | 117.4 | 117.7 | 117.8 | 118.1 | 117.4 | 119.1 |
N1N2N3 | 113.1 | 112.6 | 111.3 | 112.4 | 112.3 | 112.0 | 110.4 | 114.9 |
N2N3N4 | 113.0 | 112.6 | 115.4 | 112.4 | 112.3 | 112.0 | 114.5 | 110.1 |
N3N4M1 | 117.8 | 118.2 | 118.0 | 117.7 | 117.8 | 118.1 | 118.2 | 116.9 |
M1N4N5 | 117.8 | 118.2 | 118.0 | 119.1 | 117.8 | 118.1 | 118.3 | 116.9 |
N4N5N6 | 113.0 | 112.6 | 113.0 | 113.1 | 112.3 | 112.0 | 112.1 | 114.1 |
N5N6N7 | 113.1 | 112.6 | 113.0 | 113.1 | 112.3 | 112.0 | 112.1 | 114.1 |
N6N7M1 | 117.8 | 118.2 | 118.0 | 119.1 | 117.8 | 118.1 | 118.3 | 116.9 |
M1N7N8 | 117.8 | 118.2 | 118.0 | 117.7 | 117.8 | 118.1 | 118.2 | 116.8 |
N7N8N9 | 113.1 | 112.6 | 115.4 | 112.4 | 112.3 | 112.0 | 114.5 | 110.1 |
N8N9N10 | 113.0 | 112.6 | 111.3 | 112.4 | 112.3 | 112.0 | 110.4 | 114.9 |
N9N10M1 | 117.8 | 118.2 | 117.4 | 117.7 | 117.8 | 118.1 | 117.4 | 119.1 |
M1N10N11 | 117.8 | 118.2 | 117.7 | 119.1 | 117.8 | 118.1 | 117.7 | 119.1 |
N10N11N12 | 113.0 | 112.6 | 113.7 | 113.1 | 112.3 | 112.0 | 112.9 | 112.0 |
N11N12N1 | 113.1 | 112.6 | 113.7 | 113.1 | 112.3 | 112.0 | 112.9 | 112.0 |
N12N1M1 | 117.8 | 118.2 | 117.7 | 119.1 | 117.8 | 118.1 | 117.7 | 119.1 |
N–M–N bond lengths between N donor atom, M, and nitride N atom, pm | ||||||||
N1M1N13 | 119.1 | 119.5 | 120.4 | 120.5 | 117.4 | 117.4 | 117.3 | 124.0 |
N4M1N13 | 119.1 | 119.5 | 118.5 | 120.5 | 117.4 | 117.4 | 118.1 | 113.5 |
N7M1N13 | 119.1 | 119.5 | 118.5 | 120.5 | 117.4 | 117.4 | 118.1 | 113.5 |
N10M1N13 | 119.1 | 119.5 | 120.4 | 120.5 | 117.4 | 117.4 | 117.3 | 124.0 |
APT Analysis Data | ||||||||
M | Effective charge on an atom, units electron charge ē | |||||||
M1 | N1 (N10) | N2 (N9) | N5 (N6) | N4 (N7) | N3 (N8) | N11(N12) | N13 | |
Mn | +0.377 | −0.151 (−0.151) | +0.079 (+0.079) | +0.025 (+0.024) | −0.151 (−0.151) | +0.079 (+0.079) | +0.025 (+0.024) | −0.185 |
Fe | +0.115 | −0.209 (−0.209) | +0.131 (+0.131) | −0.014 (−0.014) | −0.050 (−0.050) | −0.050 (−0.050) | +0.029 (+0.029) | +0.211 |
NBO Analysis Data | ||||||||
M | Effective charge on an atom, units electron charge ē | |||||||
M1 | N1 (N10) | N2 (N9) | N5 (N6) | N4 (N7) | N3 (N8) | N11(N12) | N13 | |
Mn | −0.065 | −0.113 (−0.113) | +0.057 (+0.057) | +0.012 (+0.012) | −0.113 (−0.113) | +0.057 (+0.057) | +0.012 (+0.012) | +0.239 |
Fe | +0.056 | −0.167 (−0.167) | +0.075 (+0.075) | +0.023 (+0.023) | −0.040 (−0.040) | +0.004 (+0.004) | +0.021 (+0.021) | +0.111 |
Compound | Calculation Method | ΔfH0, kJ/mol | S0, J/mol∙K | ΔfG0, kJ/mol |
---|---|---|---|---|
Mn(N13) | DFT B3PW91/TZVP | 1704.9 | 424.4 | 1956.4 |
DFT OPBE/TZVP | 1411.2 | 429.5 | 1661.2 | |
DFT M06/TZVP | 1834.5 | 425.7 | 2085.6 | |
Fe(N13) | DFT B3PW91/TZVP | 1821.2 | 422.7 | 2071.8 |
DFT OPBE/TZVP | 1486.3 | 416.8 | 1738.6 | |
DFT M06/TZVP | 1980.1 | 419.8 | 2231.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailov, O.V.; Chachkov, D.V. Molecular Structure of M(N13) Compounds with 12-Membered Nitrogen-Containing Cycle and Axial Nitrogen Atom (M = Mn, Fe): Quantum-Chemical Design by DFT Method. Quantum Rep. 2023, 5, 282-293. https://doi.org/10.3390/quantum5010019
Mikhailov OV, Chachkov DV. Molecular Structure of M(N13) Compounds with 12-Membered Nitrogen-Containing Cycle and Axial Nitrogen Atom (M = Mn, Fe): Quantum-Chemical Design by DFT Method. Quantum Reports. 2023; 5(1):282-293. https://doi.org/10.3390/quantum5010019
Chicago/Turabian StyleMikhailov, Oleg V., and Denis V. Chachkov. 2023. "Molecular Structure of M(N13) Compounds with 12-Membered Nitrogen-Containing Cycle and Axial Nitrogen Atom (M = Mn, Fe): Quantum-Chemical Design by DFT Method" Quantum Reports 5, no. 1: 282-293. https://doi.org/10.3390/quantum5010019
APA StyleMikhailov, O. V., & Chachkov, D. V. (2023). Molecular Structure of M(N13) Compounds with 12-Membered Nitrogen-Containing Cycle and Axial Nitrogen Atom (M = Mn, Fe): Quantum-Chemical Design by DFT Method. Quantum Reports, 5(1), 282-293. https://doi.org/10.3390/quantum5010019