Asymptotic Quantization of a Particle on a Sphere
Abstract
:1. Introduction
2. Variable-Spin Quasidistributions
3. Deformation Quantization on
Star-Product
4. Eigenfunctions of and
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Klauder, J.R. Quantization without quantization. Ann. Phys. 1995, 237, 147–160. [Google Scholar] [CrossRef]
- Ali, S.T.; Englis, M. Quantization Methods: A Guide por Physicists and Analysts. Rev. Math. Phys. 2005, 17, 391–490. [Google Scholar] [CrossRef] [Green Version]
- Klauder, J.R. How to Secure Valid Quantizations. Entropy 2022, 24, 1374. [Google Scholar] [CrossRef]
- Błaszak, M.; Domański, Z. Phase space quantum mechanics. Ann. Phys. 2012, 327, 167–211. [Google Scholar] [CrossRef] [Green Version]
- Esposito, C. Formality Theory: From Poisson Structures to Deformation Quantization; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Esposito, G.; Marmo, G.; Sudarshan, G. From Classical to Quantum Mechanics An Introduction to the Formalism, Foundations and Applications; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Domański, Z. Deformation quantization on the cotangent bundle of a Lie group. J. Math. Phys. 2021, 62, 033504. [Google Scholar] [CrossRef]
- Hawkins, E.; Minz, C.; Rejzner, K. Quantization, Dequantization, and Distinguished States. arXiv 2022, arXiv:2207.05667. [Google Scholar]
- Osorio de Almeida, A.M. The Weyl representation in classical and quantum mechanics. Phys. Rep. 1998, 295, 265–342. [Google Scholar] [CrossRef]
- Schroeck, F. Quantum Mechanics on Phase Space; Kluwer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Curtright, T.L.; Fairlie, D.B.; Zachos, C.K. A Concise Treatise on Quantum Mechanics in Phase Space; World Scientific: Singapore, 2014. [Google Scholar]
- Zachos, C.K. Deformation quantization: Quantum mechanics lives and works in phase space. EPJ Web Conf. 2014, 78, 02004. [Google Scholar] [CrossRef] [Green Version]
- Rundle, R.P.; Everitt, M.J. Overview of the Phase Space Formulation of Quantum Mechanics with Application to Quantum Technologies. Adv. Quant. Tech. 2021, 4, 2100016. [Google Scholar] [CrossRef]
- Dubin, D.A.; Hennings, M.A.; Smith, T.B. Mathematical Aspects of Weyl Quantization and Phase; World Scientific: Singapore, 2000. [Google Scholar]
- Zachos, C.K.; Fairle, D.B.; Curtright, T.L. Quantum Mechanics in Phase Space; World Scientific: Singapore, 2005. [Google Scholar]
- De Gosson, M.A. Born–Jordan Quantization: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Onofri, E. A note on coherent state representations of Lie groups. J. Math. Phys. 1975, 16, 1087–1089. [Google Scholar] [CrossRef]
- Perelomov, A. Generalized Coherent States and Their Applications; Springer: Berlin, Germany, 1986. [Google Scholar]
- Zhang, W.M.; Feng, D.H.; Gilmore, R. Coherent states: Theory and some applications. Rev. Mod. Phys. 1990, 62, 867. [Google Scholar] [CrossRef]
- Gazeau, J.P. Coherent States in Quantum Physics; Wiley-VCH: Berlin, Germany, 2009. [Google Scholar]
- Stratonovich, R.L. On distributions in representation space. Sov. Phys. JETP 1956, 31, 1012–1020. [Google Scholar]
- Berezin, P.A. General concept of quantization. Comm. Math. Phys. 1975, 40, 153–174. [Google Scholar] [CrossRef]
- Agarwal, G.S. Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions. Phys. Rev. A 1981, 24, 2889–2896. [Google Scholar] [CrossRef] [Green Version]
- Várilly, J.C.; Gracia-Bondía, J.M. The Moyal representation for spin. Ann. Phys. 1989, 190, 107–148. [Google Scholar] [CrossRef]
- Schlichenmaier, M. Berezin-Toeplitz Quantization for Compact Kähler Manifolds. A Review of Results. Adv. Math. Phys. 2010, 2010, 927280. [Google Scholar] [CrossRef]
- Brif, C.; Mann, A. Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries. Phys. Rev. A 1999, 59, 971–987. [Google Scholar] [CrossRef] [Green Version]
- Moyal, J.E. Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 1949, 45, 99–124. [Google Scholar] [CrossRef]
- Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D. Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Phys. 1978, 111, 61–110. [Google Scholar] [CrossRef]
- Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D. Deformation theory and quantization. II. Physical applications. Ann. Phys. 1978, 111, 111–151. [Google Scholar] [CrossRef]
- Gracia-Bondía, J.M.; Lizzi, F.; Marmo, G.; Vitale, P. Infinitely many star products to play with. JHEP 2002, 4, 026. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.T.; Atakishiyev, N.M.; Chumakov, S.M.; Wolf, K.B. The Wigner function for general Lie groups and the wavelet transform. Ann. Henri Poincaré 2000, 1, 685–714. [Google Scholar] [CrossRef]
- Andreev, V.A.; Man’ko, M.A.; Man’ko, V.I. Quantizer–dequantizer operators as a tool for formulating the quantization procedure. Phys. Lett. A 2020, 384, 126349. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G. Alternative commutation relations, star products and tomography. J. Phys. A Math. Gen. 2002, 35, 699–719. [Google Scholar] [CrossRef]
- Filippov, S.N.; Man’ko, V.I. Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics. J. Russian Laser Res. 2010, 31, 211–231. [Google Scholar] [CrossRef] [Green Version]
- Kastrup, H.A. Quantization of the optical phase space S2 = ϕ mod 2π, I > 0 in terms of the group SO↑(1,2). Fortsch. Phys. 2003, 51, 975–1134. [Google Scholar] [CrossRef] [Green Version]
- Kastrup, H.A. Quantization of the canonically conjugate pair angle and orbital angular momentum. Phys. Rev. A 2006, 73, 052104. [Google Scholar] [CrossRef] [Green Version]
- Filippov, S.N.; Man’ko, V.I. Mutually unbiased bases: Tomography of spin states and the star-product scheme. Phys. Scripta 2011, T143, 014010. [Google Scholar] [CrossRef] [Green Version]
- Gazeau, J.P.; Murenzi, R. Covariant affine integral quantization(s). J. Math. Phys. 2016, 57, 052102. [Google Scholar] [CrossRef] [Green Version]
- Del Olmo, M.A.; Gazeau, J.P. Covariant integral quantization of the unit disk. J. Math. Phys. 2020, 61, 022101. [Google Scholar] [CrossRef]
- Gadella, M.; Martın, M.A.; Nieto, L.M.; Del Olmo, M.A. The Stratonovich–Weyl correspondence for one-dimensional kinematical groups. J. Math. Phys. 1991, 32, 1182–1192. [Google Scholar] [CrossRef]
- Bizarro, J.P. Weyl-Wigner formalism for rotation-angle and angular-momentum variables in quantum mechanics. Phys. Rev. A 1994, 49, 3255–3276. [Google Scholar] [CrossRef]
- Nieto, L.M.; Atakishiyev, N.A.; Chumakov, S.M.; Wolf, K.B. Wigner distribution function for Euclidean systems. J. Phys. A 1998, 31, 3875–3895. [Google Scholar] [CrossRef]
- Plebanski, J.F.; Przanowski, M.; Tosiek, J.; Turrubiates, F.J. Remarks on deformation quantization on the cylinder. Acta Phys. Pol. B 2000, 31, 561–587. [Google Scholar]
- Hancock, J.; Walton, M.A.; Wynder, B. Quantum mechanics another way. Eur. J. Phys. 2004, 25, 525–534. [Google Scholar] [CrossRef]
- Rigas, I.; Sanchez-Soto, L.L.; Klimov, A.B.; Rehacek, J.; Hradil, Z. Orbital angular momentum in phase space. Ann. Phys. 2011, 326, 426–439. [Google Scholar] [CrossRef] [Green Version]
- Cotfas, N.; Gazeau, J.P.; Vourdas, A. Finite-dimensional Hilbert space and frame quantization. J. Phys. A Math. Theor. 2011, 44, 175303. [Google Scholar] [CrossRef]
- Gazeau, J.P.; Bergeron, H. Integral quantizations with two basic examples. Ann. Phys. 2014, 344, 43–68. [Google Scholar]
- Gazeau, J.P.; Murenzi, R. Integral Quantization for the Discrete Cylinder. Quantum Rep. 2022, 4, 362–379. [Google Scholar] [CrossRef]
- Mukunda, N.; Marmo, G.; Zampini, A.; Chaturvedi, S.; Simon, R. Wigner–Weyl isomorphism for quantum mechanics on Lie groups. J. Math. Phys. 2005, 46, 012106. [Google Scholar] [CrossRef] [Green Version]
- Klimov, A.B.; de Guise, H. General approach to quasi-distribution functions. J. Phys. A 2010, 43, 402001. [Google Scholar] [CrossRef]
- Tilma, T.; Everitt, M.J.; Samson, J.H.; Munro, W.J.; Nemoto, K. Wigner functions for arbitrary quantum systems. Phys. Rev. Lett. 2016, 117, 180401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glauber, R.J. Photon Correlations. Phys. Rev. Lett. 1963, 10, 84–86. [Google Scholar] [CrossRef] [Green Version]
- Sudarshan, E.C.G. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Cahill, K.E.; Glauber, R.J. Ordered Expansions in Boson Amplitude Operators. Phys. Rev. A 1969, 177, 1857–1881. [Google Scholar] [CrossRef] [Green Version]
- Cahill, K.E.; Glauber, R.J. Density Operators and Quasiprobability Distributions. Phys. Rev. A 1969, 177, 1882–1902. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, G.S.; Wolf, E. Quantum dynamics in phase space. Phys. Rev. Lett. 1968, 21, 180–183. [Google Scholar] [CrossRef]
- Amiet, J.P.; Cibils, M.B. Description of quantum spin using functions on the sphere S2. J. Phys. A 1991, 24, 1515–1535. [Google Scholar] [CrossRef]
- Klimov, A.B. Exact evolution equations for SU(2) quasidistribution functions. J. Math. Phys. 2002, 43, 2202–2213. [Google Scholar] [CrossRef]
- Klimov, A.B.; Chumakov, S.M. A Group-Theoretical Approach to Quantum Optics; WILEY-VCH Verlag: Weinheimen, Germany, 2009. [Google Scholar]
- Kontsevich, M. Deformation quantization of Poisson manifolds. Lett. Math. Phys. 2003, 66, 157–216. [Google Scholar] [CrossRef] [Green Version]
- Dita, P. Quantization of the motion of a particle on an n-dimensional sphere. Phys. Rev. A 1997, 56, 2574–2578. [Google Scholar] [CrossRef]
- Kowalski, K.; Rembielinski, J. Quantum mechanics on a sphere and coherent states. J. Phys. A 2000, 33, 6035–6048. [Google Scholar] [CrossRef] [Green Version]
- Hall, B.C.; Mitchell, J.J. Coherent states for a 2-sphere with a magnetic field. J. Phys. A 2012, 45, 244025. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xiao, S.; Xun, D.; Liu, Q. An enlarged canonical quantization scheme and quantization of a free particle on two-dimensional sphere. Comm. Theor. Phys. 2015, 63, 19–24. [Google Scholar] [CrossRef]
- Andrade e Silva, R.; Jacobson, T. Particle on the sphere: Group-theoretic quantization in the presence of a magnetic monopole. J. Phys. A 2021, 54, 235303. [Google Scholar] [CrossRef]
- Isham, C.J.; Klauder, J.R. Coherent states for n-dimensional Euclidean groups E(n) and their application. J. Math. Phys. 1991, 32, 607–620. [Google Scholar] [CrossRef]
- Ali, S.T.; Antoine, J.P.; Gazeau, J.P. Coherent States, Wavelets, and Their Generalizations; Springer: New York, NY, USA, 2013. [Google Scholar]
- Klimov, A.B.; Romero, J.L. A generalized Wigner function for quantum systems with the SU(2) dynamical symmetry group. J. Phys. A 2008, 41, 055303. [Google Scholar] [CrossRef]
- Tomatani, K.; Romero, J.L.; Klimov, A.B. Semiclassical phase-space dynamics of compound quantum systems: SU(2) covariant approach. J. Phys. A 2015, 48, 215303. [Google Scholar] [CrossRef]
- Klimov, A.B.; Romero, J.L.; de Guise, H. Generalized SU(2) covariant Wigner functions and some of their applications. J. Phys. A 2017, 50, 323001. [Google Scholar] [CrossRef] [Green Version]
- Morales-Hernández, G.E.; Castellanos, J.C.; Romero, J.L.; Klimov, A.B. Semi-classical discretization and long-time evolution of variable spin systems. Entropy 2021, 23, 684. [Google Scholar] [CrossRef]
- Romero, J.L.; Klimov, A.B.; Wallentowitz, S. Semiclassical dynamics of a rigid rotor: SO(3) covariant approach. New J. Phys 2015, 17, 043015. [Google Scholar] [CrossRef]
- Whittaker, E.T. On the functions which are represented by the expansions of the interpolation-theory. Proc. Royal Soc. Edinburgh 1915, 35, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Kotelnikov, V.A. Procs. of the First All-Union Conference on the Technological Reconstruction of the Communications Sector and Low-Current Engineering; Izd. Red. Upr. Svyazi RKKA: Moskow, Russia, 1933. [Google Scholar]
- Rybicki, G.B. Dawson’s integral and the sampling theorem. Comp. Phys. 1989, 3, 85–87. [Google Scholar] [CrossRef] [Green Version]
- Husimi, K. Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 1940, 23, 264–314. [Google Scholar]
- Modugno, M.; Tejero Prieto, C.; Vitolo, R. A covariant approach to the quantization of a rigid body. J. Phys. A 2008, 41, 035304. [Google Scholar] [CrossRef]
- Liu, Q.H.; Tang, L.H.; Xun, D.M. Geometric momentum: The proper momentum for a free particle on a two-dimensional sphere. Phys. Rev. A 2011, 84, 042101. [Google Scholar] [CrossRef] [Green Version]
- Gneiting, C.; Fischer, T.; Hornberger, K. Quantum phase-space representation for curved configuration spaces. Phys. Rev. A 2013, 88, 062117, Erratum in Phys. Rev. A 2022, 106, 069904. [Google Scholar] [CrossRef] [Green Version]
- Blum, K. Density Matrix Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 64. [Google Scholar]
- Varshalovich, D.A.; Moskalev, A.N.; Khersonskiĭ, V.K. Quantum Theory of Angular Momentum; World Scientific: Singapore, 1988. [Google Scholar]
- Biedenharn, L.C.; Louck, J.D. Angular Momentum in Quantum Physics; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, J.L.; Klimov, A.B. Asymptotic Quantization of a Particle on a Sphere. Quantum Rep. 2023, 5, 294-310. https://doi.org/10.3390/quantum5010020
Romero JL, Klimov AB. Asymptotic Quantization of a Particle on a Sphere. Quantum Reports. 2023; 5(1):294-310. https://doi.org/10.3390/quantum5010020
Chicago/Turabian StyleRomero, José L., and Andrei B. Klimov. 2023. "Asymptotic Quantization of a Particle on a Sphere" Quantum Reports 5, no. 1: 294-310. https://doi.org/10.3390/quantum5010020
APA StyleRomero, J. L., & Klimov, A. B. (2023). Asymptotic Quantization of a Particle on a Sphere. Quantum Reports, 5(1), 294-310. https://doi.org/10.3390/quantum5010020