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Abstract: Based on the results of a quantum chemical calculation using the DFT method in the
B3PW91/TZVP, OPBE/TZVP, M06/TZVP, and M062/Def2TZVP levels, the possibility of the existence
of M(N13) chemical compounds (M = Mn, Fe) that are unknown for these elements has been predicted.
Data on the structural parameters, the multiplicity of the ground state, APT and NBO analysis, and
standard thermodynamic parameters of formation (standard enthalpy ∆fH0, entropy S0, and Gibbs’s
energy ∆fG0) for these compounds are presented.
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1. Introduction

One of the very interesting problems of modern inorganic chemistry is the problem of
stabilization of polynuclear structures consisting only of nitrogen atoms, and in particular,
of various polynitrogens. Among the possible ways to solve this problem is the stabilization
of these structures through their “metallization”, the meaning of which is the formation of
chemical bonds by nitrogen atoms with atoms of various metals, primarily with atoms of
d-elements. In our previous article [1], a quantum-chemical calculation of the molecular
and electronic structures of 3d-element (M) compounds with nitrogen, having a structural
formula (I) (see Figure 1) with a ratio between the number of atoms M and nitrogen
equal to 1:12, where M = Ti, V, Cr, Mn, Fe, Co, Ni, or Cu, was carried out, and the
fundamental possibility of their existence was shown using quantum-chemical methods
DFT B3PW91/TZVP, M06/TZVP, OPBE/TZVP, and MP2/TZVP for each of the above
d-elements. Due to the formation of such a structure with the participation of the central
atom of the 3d element, stabilization of the structural fragment of twelve nitrogen atoms
takes place, which, according to the data presented in [2–10], if capable of existing as
a separate molecule, is very unstable. In this regard, it seems interesting to find out
whether, in principle, the existence of chemical compounds of general formula (II) (Figure 2)
is possible, which, like the compounds described in [1], contain a 12-membered cycle
of nitrogen atoms and a nitride anion in an axial position relative to the group of the
four nitrogen atoms bonded to the M atom in a total of seven covalent bonds, as follows:
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 (I) 

Figure 1. The structure of M(N12) compound described in [1]. 

 (II) 

Figure 2. The structure of M(N13) compound. 

Taking into account the number of valence electrons in the 4s and 3d orbitals and the 
valence capabilities of the M atoms of the 3d elements, it can be expected that compounds 
with the structural formula II can form a few of these M, namely, only those that have 
seven or more in the above orbitals more electrons. Although there are six such elements 
(Mn, Fe, Co, Ni, Cu, and Zn), one can actually expect their formation only for two of them, 
namely Mn and Fe, for which compounds are known where these elements form seven 
covalent bonds with other atoms (namely, KMnO4 and KFeO4). Be that as it may, there is 
no information about the compounds of formula II in the literature, although a number of 
publications have considered two-element chemicals containing atoms of s-, p- or d-ele-
ments and nitrogen atoms (see, in particular, [11–16]). It should be noted that almost every 
one of these works mentioned the possible use of such compounds as potential high-en-
ergy materials. A discussion of the possibility of the existence of type II compounds for 
various M of 3d elements, as well as the dependence of the parameters of their molecular 
and electronic structure on the nature of M, is the subject of this article. 

2. Method 
In this work, we used the density functional theory (DFT), which combines the stand-

ard extended split-valence basis set TZVP and the most modern hybrid functional M06, 
described in detail in [17]. For comparison, the other version of the DFT method, namely 
DFT with B3PW91 functional, is described in detail in Refs. [18–20] and used by us in [21–
23]. The use of the given version of the DFT method, in this case, is because, according to 
[18–20], it allows one to obtain, as a rule, the most accurate (i.e., close to experimental) 
values of the geometric parameters of molecular structures, as well as much more accurate 
values of thermodynamic and other physical–chemical parameters in comparison with 
other variants of the DFT method. In addition to them, we also calculated the molecular 
and electronic structures of these compounds using the DFT OPBE/TZVP method, which 
combines the above TZVP basis and the non-hybrid OPBE functional [24,25], which, ac-
cording to the data of works [25–29], in the case of compounds of 3d-elements, gives a 
fairly accurate ratio of the energy stability of the high-spin state with respect to the low-
spin state and, at the same time, reliably characterizes the key geometric parameters of 
the molecular structures of the metal compounds under consideration. We also used two 
other versions of the DFT method, the functionals of which are most adequate for describ-
ing the parameters of the molecular and electronic structures of d-elements, namely, DFT 
M06/TZVP and DFT M062X/Def2TZVP, the details of which are described in [17]. The 
calculations were carried out using the Gaussian09 program package [30]. As in our 

Figure 1. The structure of M(N12) compound described in [1].
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Figure 2. The structure of M(N13) compound.

Taking into account the number of valence electrons in the 4s and 3d orbitals and the
valence capabilities of the M atoms of the 3d elements, it can be expected that compounds
with the structural formula II can form a few of these M, namely, only those that have
seven or more in the above orbitals more electrons. Although there are six such elements
(Mn, Fe, Co, Ni, Cu, and Zn), one can actually expect their formation only for two of
them, namely Mn and Fe, for which compounds are known where these elements form
seven covalent bonds with other atoms (namely, KMnO4 and KFeO4). Be that as it may,
there is no information about the compounds of formula II in the literature, although a
number of publications have considered two-element chemicals containing atoms of s-, p-
or d-elements and nitrogen atoms (see, in particular, [11–16]). It should be noted that almost
every one of these works mentioned the possible use of such compounds as potential
high-energy materials. A discussion of the possibility of the existence of type II compounds
for various M of 3d elements, as well as the dependence of the parameters of their molecular
and electronic structure on the nature of M, is the subject of this article.

2. Method

In this work, we used the density functional theory (DFT), which combines the stan-
dard extended split-valence basis set TZVP and the most modern hybrid functional M06, de-
scribed in detail in [17]. For comparison, the other version of the DFT method, namely DFT
with B3PW91 functional, is described in detail in Refs. [18–20] and used by us in [21–23].
The use of the given version of the DFT method, in this case, is because, according to [18–20],
it allows one to obtain, as a rule, the most accurate (i.e., close to experimental) values of
the geometric parameters of molecular structures, as well as much more accurate values of
thermodynamic and other physical–chemical parameters in comparison with other variants
of the DFT method. In addition to them, we also calculated the molecular and electronic
structures of these compounds using the DFT OPBE/TZVP method, which combines the
above TZVP basis and the non-hybrid OPBE functional [24,25], which, according to the
data of works [25–29], in the case of compounds of 3d-elements, gives a fairly accurate ratio
of the energy stability of the high-spin state with respect to the low-spin state and, at the
same time, reliably characterizes the key geometric parameters of the molecular structures
of the metal compounds under consideration. We also used two other versions of the
DFT method, the functionals of which are most adequate for describing the parameters of
the molecular and electronic structures of d-elements, namely, DFT M06/TZVP and DFT
M062X/Def2TZVP, the details of which are described in [17]. The calculations were carried
out using the Gaussian09 program package [30]. As in our previous articles, in which this
method of calculation was used [21–23], the correspondence of the found stationary points
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to the energy minima in all cases was proved by calculating the second derivatives of the
energy to the coordinates of the atoms, wherein all equilibrium structures corresponding
to the minimum points on the potential energy surfaces had only real (and, moreover,
always positive) frequency values. Of the optimized structures for further consideration,
the one with the lowest total energy was selected. Unfortunately, at the moment, in our
studies, we had to limit ourselves to calculations using various versions of the DFT method,
since for the compounds we are considering, when completing the calculation with any of
the higher-level methods (QCISD, CCSD, and even MP2), due to the complexity of these
methods and our limited time and energy costs, we failed. Atomic polar tensors (APT)
analysis was carried out using APT version 3.1 integrated with the Gaussian09 program
package [30] according to the methodology described in detail in [31]. The APT method
is well-known for excellent numerical stability and convergence with respect to basis set
expansion and is sensibly proportionate to the convergence of energy and other calculated
wavefunction properties (unlike Mulliken analysis and related overlap-dependent meth-
ods). For comparison, NBO analysis, which was carried out according to [32], was also
used. The standard thermodynamic parameters of formation (∆fH0, S0, and ∆fG0) for the
M(N13) compounds under examination were calculated according to the methodology
described in [33].

3. Results and Discussion

According to the data of each of the above three versions of the DFT calculation,
compounds of the M(N13) type having molecular structures (II) can exist only for two 3d el-
ements, namely for Mn and Fe, as we assumed above. The interatomic distances of
M—“axial” nitrogen atoms for these M, depending on the calculation method, is in the
range of 150.0–152.5 pm, which is significantly (by more than 30 pm) shorter than the
bond lengths of M—“equatorial” nitrogen atoms; this may serve as an indication that the
chemical bond formed between them is not single or even double, but triple. In this regard,
it should be noted that in the case of 3d elements following Fe in Mendeleev’s Periodic
System (i.e., Co, Ni, Cu, and Zn), on the one hand, the interatomic distances of M—“axial”
nitrogen atoms (in the framework of the OPBE/TZVP method for M = Co, 155.3; M = Ni,
166.9; M = Cu, 186.1; M = Zn, 194 pm), on the other hand, the difference between these
distances and the bond lengths of M—“equatorial” nitrogen atoms (which are equal to
181.1, 186.2, 188.3, and 209.4 pm, respectively) is much smaller, since the formation of a
triple bond in the case of each of these four M becomes very doubtful. In view of this
important circumstance, in what follows, we will only discuss two type II compounds,
namely, Mn(N13) and Fe(N13). The most important geometric parameters of the molecular
structures of these compounds (the lengths of chemical bonds between atoms and bond
angles) obtained within the framework of each of the variants of the DFT method used by
us are presented in Table 1. As follows from the data presented in it, a grouping of four ni-
trogen atoms bound with the M atom by single bonds, in both of the above compounds of
M(N13), is strictly flat, because the sum of the angles N1N4N7, N4N7N10, N7N10N1, and
N10N1N4 in each of them is 360.0◦, and this takes place within each of the three variants
of the method used in the work DFT. There is, however, a small nuance. In the case of
Mn(N13) within the framework of the DFT B3PW91/TZVP, DFT OPBE/TZVP, and DFT
M062X/Def2TZVP methods, all the above non-bonding angles are equal to each other and
amount to 90◦, while according to the data from DFT M06/TZVP, they are equal only in
pairs, although the deviation of their values from 90◦ is smaller than 0.5◦. However, in the
case of Fe(N13), within the framework of the DFT B3PW91/TZVP and DFT OPBE/TZVP
methods, all the above non-bonding angles are equal to each other and amount to 90◦,
while according to the data of the DFT M06/TZVP and DFT M062X/Def2TZVP methods,
they are equal only in pairs, but the deviation of their values from 90◦ exceeds 0.5◦ (Table 1).
Both in the case of Mn(N13) and in the case of Fe(N13), the N4 group has the shape of either
a square (within the DFT B3PW91/TZVP and DFT OPBE/TZVP methods) or a parallelo-
gram (within the DFT M06/TZVP and DFT M062X/Def2TZVP methods). However, the
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grouping of MN4 atoms in both of these chemical compounds has a tetragonal-pyramidal
structure with a very significant (more than 45◦) deviation from the plane formed by four
“equatorial” nitrogen atoms bonded to the M atom (Table 1). This deviation somewhat
depends on the DFT method used in the calculation, but it is always more pronounced
for Mn(N13), which is quite natural if we take into account the somewhat larger radius of
the Mn atom compared to the radius of the Fe atom. Thus, in both M(N13) compounds,
the M atom is to some extent elevated above the plane of the four “equatorial” nitrogen
atoms. Within the framework of the DFT B3PW91/TZVP and DFT OPBE/TZVP methods,
the lengths of the four M–N bonds in both compounds under consideration are the same;
within the framework of the DFT M06/TZVP and DFT M062X/Def2TZVP methods, they
are different, although not too strongly (Table 1). The 12-membered macrocycles formed
by nitrogen atoms in each of these two compounds are also non-coplanar, which is clearly
seen even from the images of their molecular structures, presented in Figure 3. The values
of the electrical dipole moments (µ) of these compounds, as expected, are quite noticeably
different from 0 and are 1.66 and 1.70 in the DFT B3PW91/TZVP method and 1.77 and
1.79 Debye units in the DFT M06/TZVP method. Calculation by the DFT OPBE/TZVP
method gives significantly lower values of this parameter; moreover, interestingly, for both
of these compounds, it turns out to be almost the same, namely, 1.27 Debye units.

Table 1. Key parameters of molecular structures of Mn(N13) and Fe(N13) compounds calculated by
DFT B3PW91/TZVP, OPBE/TZVP, M06/TZVP, and M062X/Def2TZVP levels.

Mn(N13) Fe(N13)

Structural Parameter B3PW91/
TZVP

OPBE/
TZVP

M06/
TZVP

M062X/
Def2TZVP

B3PW91/
TZVP

OPBE/
TZVP

M06/
TZVP

M062X/
Def2TZVP

M–N bond lengths in the MN4 chelate node, pm

M1N1 188.4 188.5 190.7 191.1 183.0 182.6 184.5 184.9

M1N4 188.4 188.5 189.3 191.1 183.0 182.6 183.1 188.8

M1N7 188.4 188.5 189.3 191.1 183.0 182.6 183.1 188.8

M1N10 188.4 188.5 190.7 191.1 183.0 182.6 184.5 184.9

M–N bond lengths between M and nitride N atom, pm

M1N13 151.0 152.5 150.9 147.3 150.9 151.5 150.0 154.4

Nitrogen-nitrogen bond lengths in macrocycle, pm

N1N2 134.9 134.9 138.4 142.1 134.5 134.9 138.8 136.2

N2N3 127.2 128.2 125.9 123.4 127.5 128.2 125.8 123.8

N3N4 134.9 134.9 134.0 142.1 134.5 134.9 134.0 142.9

N4N5 134.9 134.9 137.6 129.9 134.5 134.9 137.6 130.0

N5N6 127.2 128.2 124.6 132.3 127.5 128.2 124.6 131.3

N6N7 134.9 134.9 137.6 130.0 134.5 134.9 137.6 130.0

N7N8 134.9 134.9 134.0 142.1 134.5 134.9 134.0 142.9

N8N9 127.2 128.2 125.9 123.4 127.5 128.2 125.8 123.8

N9N10 134.9 134.9 138.4 142.1 134.5 134.9 138.8 136.2

N10N11 134.9 134.9 132.0 129.9 134.5 134.9 131.4 137.9

N11N12 127.2 128.2 129.4 132.3 127.5 128.2 129.9 124.2

N12N1 134.9 134.9 132.0 130.0 134.5 134.9 131.4 137.9
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Table 1. Cont.

Mn(N13) Fe(N13)

Structural Parameter B3PW91/
TZVP

OPBE/
TZVP

M06/
TZVP

M062X/
Def2TZVP

B3PW91/
TZVP

OPBE/
TZVP

M06/
TZVP

M062X/
Def2TZVP

Bond angles in the MN4 grouping, deg

N1M1N4 76.3 76.0 76.0 74.6 77.7 77.7 77.4 76.2

N4M1N7 76.3 76.0 75.7 75.6 77.7 77.7 77.1 78.0

N7M1N10 76.3 76.0 76.0 74.6 77.7 77.7 77.4 76.2

N10M1N1 76.3 76.0 76.3 75.6 77.7 77.7 78.0 76.0

Bond angles sum (BAS), deg 305.2 304.0 304.0 300.4 310.8 310.8 309.9 306.4

Deviation from coplanarity, deg 54.8 56.0 56.0 59.6 49.2 49.2 50.1 53.6

Non-bond angles in the MN4 grouping, deg

N1N4N7 90.0 90.0 90.4 90.0 90.0 90.0 90.5 88.8

N4N7N10 90.0 90.0 90.4 90.0 90.0 90.0 90.5 88.8

N7N10N1 90.0 90.0 89.6 90.0 90.0 90.0 89.5 91.2

N10N1N4 90.0 90.0 89.6 90.0 90.0 90.0 89.5 91.2

Non-bond angles sum (NBAS), deg 360.0 360.0 360.0 360.0 360.0 360.0 360.0 360.0

Deviation from coplanarity, deg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Bond angles in 5-membered cycles, deg

M1N1N2 117.8 118.2 117.4 117.7 117.8 118.1 117.4 119.1

N1N2N3 113.1 112.6 111.3 112.4 112.3 112.0 110.4 114.9

N2N3N4 113.0 112.6 115.4 112.4 112.3 112.0 114.5 110.1

N3N4M1 117.8 118.2 118.0 117.7 117.8 118.1 118.2 116.9

M1N4N5 117.8 118.2 118.0 119.1 117.8 118.1 118.3 116.9

N4N5N6 113.0 112.6 113.0 113.1 112.3 112.0 112.1 114.1

N5N6N7 113.1 112.6 113.0 113.1 112.3 112.0 112.1 114.1

N6N7M1 117.8 118.2 118.0 119.1 117.8 118.1 118.3 116.9

M1N7N8 117.8 118.2 118.0 117.7 117.8 118.1 118.2 116.8

N7N8N9 113.1 112.6 115.4 112.4 112.3 112.0 114.5 110.1

N8N9N10 113.0 112.6 111.3 112.4 112.3 112.0 110.4 114.9

N9N10M1 117.8 118.2 117.4 117.7 117.8 118.1 117.4 119.1

M1N10N11 117.8 118.2 117.7 119.1 117.8 118.1 117.7 119.1

N10N11N12 113.0 112.6 113.7 113.1 112.3 112.0 112.9 112.0

N11N12N1 113.1 112.6 113.7 113.1 112.3 112.0 112.9 112.0

N12N1M1 117.8 118.2 117.7 119.1 117.8 118.1 117.7 119.1

N–M–N bond lengths between N donor atom, M, and nitride N atom, pm

N1M1N13 119.1 119.5 120.4 120.5 117.4 117.4 117.3 124.0

N4M1N13 119.1 119.5 118.5 120.5 117.4 117.4 118.1 113.5

N7M1N13 119.1 119.5 118.5 120.5 117.4 117.4 118.1 113.5

N10M1N13 119.1 119.5 120.4 120.5 117.4 117.4 117.3 124.0
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Figure 3. Molecular structures of the Mn(N13) and Fe(N13) compounds obtained as a result of DFT 
B3PW91/TZVP quantum-chemical calculation. 
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Figure 3. Molecular structures of the Mn(N13) and Fe(N13) compounds obtained as a result of DFT
B3PW91/TZVP quantum-chemical calculation.

APT and NBO analysis data for the compounds under study obtained by DFT
M062X/Def2TZVP level are presented in Table 2; similar data obtained by DFT B3PW91/TZVP,
DFT OPBE/TZVP, and DFT M06/TZVP can be found in the Supplementary Materials. As
can be seen from these data, the values of the effective charges on the M and N atoms
are quite different from those that might be expected if all the compounds present in the
compounds under consideration were purely ionic; this circumstance indicates a very
pronounced delocalization of the electron density within the entire molecular structure of
M(N13). Characteristically, the effective charges on the M atoms in the framework of the
APT analysis are positive (although very small in absolute value), while in the framework
of the NBO analysis, they are negative in the case of Mn(N13) and positive in the case of
Fe(N13) (Table 2). On the whole, a similar situation occurs in the case of the other three DFT
methods (see the Supplementary Materials). Taking into account the important fact that
the electronegativity of the nitrogen atom is much greater than the electronegativity of the
iron and manganese atoms, the effective charges on the atoms presented in Table 2 look
rather unusual; the question of how much they correspond to reality is still open to us.
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Table 2. APT and NBO analysis data for Mn(N13) and Fe(N13) according to DFT M062X/Def2TZVP.

APT Analysis Data

M
Effective charge on an atom, units electron charge ē

M1 N1 (N10) N2 (N9) N5 (N6) N4 (N7) N3 (N8) N11(N12) N13

Mn +0.377 −0.151
(−0.151)

+0.079
(+0.079)

+0.025
(+0.024)

−0.151
(−0.151)

+0.079
(+0.079)

+0.025
(+0.024) −0.185

Fe +0.115 −0.209
(−0.209)

+0.131
(+0.131)

−0.014
(−0.014)

−0.050
(−0.050)

−0.050
(−0.050)

+0.029
(+0.029) +0.211

NBO Analysis Data

M
Effective charge on an atom, units electron charge ē

M1 N1 (N10) N2 (N9) N5 (N6) N4 (N7) N3 (N8) N11(N12) N13

Mn −0.065 −0.113
(−0.113)

+0.057
(+0.057)

+0.012
(+0.012)

−0.113
(−0.113)

+0.057
(+0.057)

+0.012
(+0.012) +0.239

Fe +0.056 −0.167
(−0.167)

+0.075
(+0.075)

+0.023
(+0.023)

−0.040
(−0.040)

+0.004
(+0.004)

+0.021
(+0.021) +0.111

According to the data of each of these three methods, the ground state of Mn(N13) is a
spin triplet, which is in good agreement with the values of the squared intrinsic angular
momentum of the total spin <S**2>, equal to 2.0016 (in the case of the DFT B3PW91/TZVP),
2.0009 (in the case of DFT OPBE/TZVP), 2.0209 (in the case of DFT M06/TZVP), and 2.0264
(in the case of DFT M062/Def2TZVP). The Fe(N13) ground state is a spin doublet, which also
corresponds to the <S**2> values for this spin multiplicity (0.7508 (DFT B3PW91/TZVP),
0.7501 (DFT OPBE/TZVP), 0.7537 (DFT M06/TZVP), and 1.4530 (M062/Def2TZVP)). As
can be seen from these data, for both studied compounds, the three variants of the DFT
method used by us give <S**2> values that are very close to each other, although their
functionals differ quite significantly from each other. However, if in the case of Fe(N13),
the multiplicity of the ground state (which corresponds to the presence of one unpaired
electron) seems quite natural, since the Fe atom is bound to nitrogen atoms by seven bonds
and its electronic configuration in this compound can be 3d1, then in the case of Mn(N13),
the triplet ground state looks somewhat unexpected, since in this case, with the same
number of metal–nitrogen bonds as in Fe(N13), its electronic configuration should be 3p54s1

(but not 3p6, which seems a priori more probable). In this regard, it is worth noting that
the nearest excited state for Mn(N13), according to the data of each of these three DFT
methods, is a spin singlet whose energy shows 23.3 (DFT B3PW91/TZVP), 12.8 kJ/mol
(DFT OPBE/TZVP), and 39.6 (DFT M062X/Def2TZVP) more ground state energy. A similar
situation also occurs in the case of Fe(N13), where, according to the data of each of these
methods, the nearest excited state is a spin quartet whose energy exceeds the energy of the
ground state by 160.6, 190.1, and 174.0 kJ/mol, respectively. Images of the highest occupied
and lowest vacant molecular orbitals (HOMO and LUMO, respectively) for the compounds
under consideration, obtained by each of these three DFT methods above, are presented in
Figures 4 and 5.

The standard thermodynamic parameters of formation for the compounds under
examination (∆fH0, S0, and ∆fG0) are presented in Table 3. As can be seen from it, each of
these parameters is positive. According to canons of thermodynamics, none of them can be
obtained from the simple substances formed by chemical elements in their compositions
(i.e., N and corresponding M). Nevertheless, according to the data obtained as a result
of the quantum-chemical calculation carried out by us, the molecular structures of the
given compounds and the full totality of their geometric parameters can be realized as
a single whole. Thus, it can be argued that they are capable of existence, at least in the
gas phase as individual molecules. It should be noted that, according to data of each
of the DFT methods indicated above, ∆fH0 and ∆fG0 values for Fe(N13) are greater than
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for Mn(N13), whereas, for S0 values, an inverse ratio takes place (Table 2). It should be
noted that the calculation of ∆fH0, S0, and ∆fG0 parameters using DFT M062/Def2TZVP
was considered inappropriate by us, because M062X is a global hybrid functional with
54% HF exchange, and it is the top performer within the 06 functionals for main group
thermochemistry, kinetics, and non-covalent interactions; however, it cannot be used for
cases where multi-reference species are or might be involved, such as in transition metal
thermochemistry and organometallics [34]).
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In conclusion of this section, it seems appropriate to compare the key data of the
Mn(N13) and Fe(N13) compounds studied by us in this work with similar data of the
Mn(N12) and Fe(N12) compounds close to them in composition, which were presented in
our work [1] and its Supplementary Materials and also calculated with DFT B3PW91/TZVP,
DFT M06/TZVP, and DFT OPBE/TZVP. A comparison of these data shows that the key
fragment of the M(N13) molecular structure, namely, the N12 macrocycle, as a whole, does
not undergo noticeable changes compared to that in the M(N12) molecular structure. What
has just been said also applies to the degree of deviation of the MN4 groupings from
coplanarity, which in M(N13), for any of the two M we considered, and in the framework of



Quantum Rep. 2023, 5 291

any of the three variants of the DFT method used in the calculation, is only slightly greater
than in the corresponding compound M(N12) (in particular, within the framework of the
DFT B3PW91/TZVP method, in the case of Fe(N13), it is 49.2◦, while in the case of Fe(N12),
it is 47.1◦). This slight change can be attributed to the fact that the formation of a rather
short triple bond by the M atom with the “axial” nitrogen atom should additionally “raise”
the M atom above the plane of the four N atoms that form chemical bonds with it.

Table 3. Standard thermodynamic parameters of Mn(N13) and Fe(N13) calculated by various methods.

Compound Calculation Method ∆fH0, kJ/mol S0, J/mol·K ∆fG0, kJ/mol

Mn(N13) DFT B3PW91/TZVP 1704.9 424.4 1956.4

DFT OPBE/TZVP 1411.2 429.5 1661.2

DFT M06/TZVP 1834.5 425.7 2085.6

Fe(N13) DFT B3PW91/TZVP 1821.2 422.7 2071.8

DFT OPBE/TZVP 1486.3 416.8 1738.6

DFT M06/TZVP 1980.1 419.8 2231.6

4. Conclusions

The above data, obtained using three variants of the DFT method with different
functionals, namely DFT B3PW91/TZVP, DFT M06/TZVP, and DFT OPBE/TZVP, un-
ambiguously predict the possibility of the existence of new, hitherto unknown chemical
compounds, Mn(N13) and Fe(N13), containing a cyclic group of twelve nitrogen atoms and
an “axial” N atom bonded to the Mn or Fe atom via a triple bond. At the same time, each
of these three methods testifies to the impossibility of the existence of compounds of the
M(N13) type for all other 3d elements. The results of calculating the molecular structure
of both these compounds, obtained by the above variants of the DFT method, are in good
agreement with each other not only qualitatively, but also quantitatively. Both of these
compounds have a tetragonal-pyramidal structure of the MN4 group (M = Mn, Fe) with
a very significant (more than 45◦) deviation from coplanarity; however, the grouping of
four N4 nitrogen atoms bonded to the M atom in any of these compounds is strictly planar.
However, the 12-membered macrocycles formed by nitrogen atoms in both Mn(N13) and
Fe(N13) are non-coplanar, with very significant deviations from coplanarity. Comparison
of the calculation data for the parameters of molecular structures and the standard ther-
modynamic parameters of the M(N13) (M = Mn, Fe) compounds we considered with the
analogous parameters of the M(N12) compounds of the same 3d elements, characterized in
our previous article [1], allows us to note quite a significant similarity between them.

As it seems to us, the results of quantum chemical calculations within the framework
of each of these three methods give every reason for a more thorough study of both
of these chemical compounds, for which, first of all, it is necessary to experimentally
confirm their existence. This has a direct meaning, if only because they are high-energy
substances (since both of them, according to our calculation of ∆fH0 and ∆fH0 values, as
a rule, are 1500 kJ/mol or more, depending on the DFT method used), and if successful
in obtaining them, they will undoubtedly find some practical application, at least in the
capacity indicated.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/quantum5010019/s1, Mn(N13) calculation by B3PW91/TZVP
method; Mn(N13) calculation by M06/TZVP method; Mn(N13) calculation by OPBE/TZVP method;
Mn(N13) calculation by M062X/Def2TZVP method; Fe(N13) calculation by B3PW91/TZVP method;
Fe(N13) calculation by M06/TZVP method; Fe(N13) calculation by OPBE/TZVP method; Fe(N13)
calculation by M062X/Def2TZVP method.

https://www.mdpi.com/article/10.3390/quantum5010019/s1
https://www.mdpi.com/article/10.3390/quantum5010019/s1
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