Quantum Neurobiology
Abstract
:1. Introduction
1.1. The Human Brain
1.2. Quantum Neurobiology
2. Waves, Protein Folding, and Genomics
2.1. Wavefunctions: EEG, fMRI, CT, PET Integration
2.2. Quantum EEG
2.3. Quantum MRI (Radiology)
2.4. Quantum Protein Folding
2.5. Quantum Genomics
3. Neural Dynamics
3.1. Superpositioned Data and Quantum Probability
3.2. Neural Field Theories
3.3. Neurofilamentary Dynamics
3.4. Quantum Nanoscience for Neurobiology
3.4.1. Nanoparticle Neuroscience
3.4.2. Molecular Codes
3.4.3. Autonomous Robotic Nanofabrication
4. Neuroscience Physics
4.1. AdS/Brain
4.2. AdS/Memory
4.3. AdS/Superconducting
4.4. AdS/Energy (Brain Hamiltonian)
4.5. Neuronal Gauge Theories
4.6. Network Neuroscience
4.7. Random Tensors
5. Discussion
Author Contributions
Funding
Conflicts of Interest
Glossary
AdS/Brain | Multiscalar neuroscience interpretation of the AdS/CFT correspondence |
AdS/CFT correspondence (anti-de Sitter space/conformal field theory) | Theory positing that a physical system with a bulk volume can be described by a boundary theory in one less dimension |
AlphaFold | Protein folding predictor based on system-level attention to spatial constraints (from DeepMind/Google) |
Biological physics | Study of living processes through the application of physical principles |
Bosonic codes | Self-contained photonic system for quantum error correction (e.g. harmonic oscillator) |
Chaotic dynamics | Dynamical regimes of ballistic spread followed by saturation |
Filamentary dynamics | Role of neurofilaments (neuron-specific proteins) in axonal and synaptic signaling |
GKP bosonic codes (Gottesman, Kitaev, Preskill) | Quantum error correction method by reorienting the position and momentum of a molecule with known symmetric rotations |
Hamiltonian | (Quantum mechanics) operator corresponding to the total energy of a system |
Hamming distance | Sum of positional mismatches of two bit strings |
Hopf bifurcation | System critical point at which a periodic orbit appears or disappears per a local change in stability |
Information biology | Study of information processing activities performed by biosystems |
Information scrambling | Rapid spread of information in a quantum system prohibiting local measurement |
Josephson junction | Device consisting of two or more superconductors coupled by a link that conducts electrons |
Laplacian | (Schrödinger equation) operator representing the flux density of the gradient flow of a function |
Matrix | Array of numbers arranged in rows and columns used to study physical phenomena (probability distribution) |
Melonic diagram | (Melon-shaped) graph expression of a high-dimensional system |
MERA (multiscale entanglement renormalization ansatz) tensor networks | Entangled quantum systems model |
Molecular codes | Quantum error correction by performing rotations on asymmetric rigid bodies in free space |
Nanoparticle neuroscience | Nanoparticles (100 nm objects) that cross the blood-brain barrier to perform an intervention |
Neurobiology | Field investigating the form and function of the nervous system (neurons, glia, axons, and dendrites) |
Neurofilament | Neuron-specific protein implicated in neuronal cytoskeletal structure and signaling |
Neuromorphic computation | Electronic computation inspired by neural systems and spike thresholding |
Neuropeptides | Small chains of amino acids (chemicals) synthesized and released by neurons |
Neuroscience | Study of the structure and function of the nervous system and brain |
Neuroscience physics | Neuroscience interpretation of foundational physics findings |
Path integral | Approach of summing over all possible paths in a system |
Protein folding problem | Predicting a protein’s final 3D structure from the underlying sequence of amino acids |
Quantum biology | Study of how quantum properties may play a governing role in biological functions |
Quantum computing | Use of engineered quantum systems (with atoms, ions, photons) to perform computation |
Quantum information biology | Study of biological systems with quantum information methods |
Quantum internet | Information transmitted with quantum effects (entanglement), using quantum cryptography |
Quantum machine learning | Machine learning applied in a quantum environment |
Quantum memory (QRAM) | Quantum-mechanical computer memory, storing information with greater scalability as quantum states in superposition (vs classical binary states) |
Quantum nanoscience | Study of nanostructured systems that incorporate and exploit quantum effects |
Quantum neurobiology | Discipline within quantum biology and biological physics that studies potential quantum effects in the brain and applies quantum information science methods to neurobiological questions |
Quantum physics | Description of particles making up all matter including living organisms |
Quantum probability | Quantum mechanical rules for assigning probabilities |
Quantum walk | Quantum version of classical random walk based on coin-flip operator and lattice-graph propagation |
Qutrit | Three-level quantum state, simultaneously in 0, 1, 2 until collapsed in a measurement (vs two-state qubit) |
Random tensors | Generalization of random matrices (2 × 2 matrix formulations) to 3+ dimensions |
Renormalization | The ability to view a system at multiple scales by collapsing degrees of freedom (parameters) |
Spike-activated neural networks (SNNs) | Bio-inspired neuromorphic computation based on thresholded activation |
Superdeterminism | Interpretation that quantum effects are the result of hidden variables (vs indeterminism) |
Superpositioned data | Quantum information representation of all possible system states simultaneously |
Tensor field theories | Local field theories whose fields transform as a tensor under a global or local symmetry group |
Tensor networks | Structure for manipulating high-dimensional data (many-body quantum states) as the factorization of high-order tensors (many indices) into low-order tensors whose indices are summed to form a contracted network |
Transcription factors | Proteins regulating gene expression by attaching themselves to DNA |
References
- Ball, P. Physics of life: The dawn of quantum biology. Nature 2011, 474, 272–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whaley, K.B. Research Description. K. Birgitta Whaley Lab, UC Berkeley. 2021. Available online: https://vcresearch.berkeley.edu/faculty/k-birgitta-whaley (accessed on 15 December 2021).
- Emani, P.S.; Warrell, J.; Anticevic, A.; Bekiranov, S.; Gandal, M.; McConnell, M.J.; Sapiro, G.; Aspuru-Guzik, A.; Baker, J.T.; Bastiani, M.; et al. Quantum computing at the frontiers of biological sciences. Nat. Meth. 2021, 18, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, S.; Sarovar, M.; Whaley, K.B. Limits of quantum speedup in photosynthetic light harvesting. New J. Phys. 2010, 12, 065041. [Google Scholar] [CrossRef]
- Li, Z.Z.; Ko, L.; Yang, Z.; Sarovar, M.; Whaley, K.B. Interplay of vibration- and environment-assisted energy transfer. arXiv 2021, arXiv:2110.09895v1. [Google Scholar]
- Tarlacia, S.; Pregnolato, M. Quantum neurophysics: From non-living matter to quantum neurobiology and psychopathology. Int. J. Psychophysiol. 2016, 103, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Penrose, R. The Emperor’s New Mind; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Hameroff, S. Quantum coherence in microtubules. A neural basis for emergent consciousness? J. Cons. Stud. 1994, 1, 91–118. [Google Scholar]
- Fisher, M.P.A. Quantum Cognition: The possibility of processing with nuclear spins in the brain. Ann. Phys. 2015, 362, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Koch, C.; Hepp, K. Quantum Mechanics in the Brain. Nature 2006, 440, 611–612. [Google Scholar] [CrossRef] [PubMed]
- Tegmark, M. The importance of quantum decoherence in brain processes. Phys. Rev. E 2000, 61, 4194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruza, P.D.; Wang, Z.; Busemeyer, J.B. Quantum cognition: A new theoretical approach to psychology. Trends Cogn. Sci. 2015, 19, 383–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broekaert, J.; Basieva, I.; Blasiak, P.; Pothos, E.M. Quantum-like dynamics applied to cognition: A consideration of available options. Phil. Trans. R. Soc. A 2017, 375, 20160387. [Google Scholar] [CrossRef] [PubMed]
- Jedlicka, P. Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology? Front. Mol. Neurosci. 2017, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hossenfelder, S.; Palmer, T. Rethinking superdeterminism. Front. Phys. 2020, 8, 139. [Google Scholar] [CrossRef]
- Sen, I.; Valentini, A. Superdeterministic hidden-variables models I: Non-equilibrium and signaling. Proc. R. Soc. A 2020, 476, 20200212. [Google Scholar] [CrossRef]
- Kellner, J. Pitowsky’s Kolmogorovian Models and Super-determinism. Found. Phys. 2017, 47, 132–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churchland, P.S.; Ramachandran, V.S.; Sejnowski, T.J. A Critique of Pure Vision. In Large-Scale Neuronal Theories of the Brain; Koch, C., Davis, J.L., Eds.; MIT Press: Cambridge, MA, USA, 1994; pp. 23–60. [Google Scholar]
- Goh, B.H.; Tong, E.S.; Pusparajah, P. Quantum Biology: Does quantum physics hold the key to revolutionizing medicine? Prog. Drug Discov. Biomed. Sci. 2020, 3, a0000130. [Google Scholar] [CrossRef]
- Bassett, D.S.; Gazzaniga, M.S. Understanding complexity in the human brain. Trends Cogn. Sci. 2011, 15, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, N.R.B.; Angelica, A.; Chakravarthy, K.; Svidinenko, Y.; Boehm, F.J.; Opris, I.; Lebedev, M.; Swan, M.; Garan, S.A.; Rosenfeld, J.V.; et al. Human Brain/Cloud Interface. Front. Neurosci. 2019, 13, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Motta, A.; Schurr, M.; Staffler, B.; Helmstaedter, M. Big data in nanoscale connectomics, and the greed for training labels. Curr. Opin. Neurobiol. 2019, 55, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Recanatesi, S.; Ocker, G.K.; Buice, M.A.; Shea-Brown, E. Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity. PLoS Comput. Biol. 2019, 17, e1006446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urai, A.E.; Doiron, B.; Leifer, A.M.; Churchland, A.K. Large-scale neural recordings link brain and behavior. arXiv 2021, arXiv:2103.14662. [Google Scholar]
- Aimon, S.; Katsuki, T.; Jia, T.; Grosenick, L.; Broxton, M.; Deisseroth, K.; Sejnowski, T.J.; Greenspan, R.J. Fast near-whole-brain imaging in adult Drosophila during responses to stimuli and behavior. PLoS Biol. 2019, 17, 2006732. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Asano, S.M.; Upadhyayula, S.; Pisarev, I.; Milkie, D.E.; Liu, T.-L.; Singh, V.; Graves, A.; Huynh, G.H.; Zhao, Y.; et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 2019, 363, eaau8302. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, C.A.; Adams, J.W.; Negraes, P.D.; Carromeu, C.; Tejwani, L.; Acab, A.; Tsuda, B.; A Thomas, C.; Sodhi, N.; Fichter, K.M.; et al. Pharmacological reversal of synaptic and network pathology in human MECP2-KO neurons and cortical organoids. EMBO Mol. Med. 2021, 13, e12523. [Google Scholar] [CrossRef] [PubMed]
- Sterratt, D.; Graham, B.; Gillies, A.; Willshaw, D. Principles of Computational Modelling in Neuroscience; Cambridge University Press: Cambridge, UK, 2011; pp. 226–266. [Google Scholar]
- Sejnowski, T.J. The unreasonable effectiveness of deep learning in artificial intelligence. PNAS 2020, 117, 30033–30038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, Q.; Liu, L.; Zhou, Z.; Ruan, Z.; Kong, L.; Li, Y.; Wang, Y.; Zhong, N.; Chai, R.; et al. TeraVR empowers precise reconstruction of complete 3-D neuronal morphology in the whole brain. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Brittain, D.; Borseth, J.; Scott, M.E.; Williams, D.; Perkins, J.; Own, C.S.; Murfitt, M.; Torres, R.M.; Kapner, D.; et al. A petascale automated imaging pipeline for mapping neuronal circuits with high-throughput transmission electron microscopy. bioRxiv 2019, bioRxiv:791889. [Google Scholar] [CrossRef] [PubMed]
- Abbott, L.F.; Bock, D.D.; Callaway, E.M.; Denk, W.; Dulac, C.; Fairhall, A.L.; Fiete, I.; Harris, K.M.; Helmstaedter, M.; Jain, V.; et al. The mind of a mouse. Cell 2020, 182, 1372–1376. [Google Scholar] [CrossRef]
- Pennisi, E. The human genome. Science 2001, 291, 1177–1180. [Google Scholar] [CrossRef]
- Zheng, Z.; Lauritzen, J.S.; Perlman, E.; Robinson, C.G.; Nichols, M.; Milkie, D.; Torrens, O.; Torrens, O.; Fisher, C.B.; Fisher, C.B.; et al. A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster. Cell 2018, 174, 730–743. [Google Scholar] [CrossRef] [Green Version]
- Lichtman, J.W.; Pfister, H.; Shavit, N. The big data challenges of connectomics. Nat. Neurosci. 2014, 17, 1448–1454. [Google Scholar] [CrossRef]
- Reinsel, D. IDC’s Global DataSphere Forecast Shows Continued Steady Growth in the Creation and Consumption of Data. IDC Report: Worldwide Global DataSphere Forecast, 2020-2024: The COVID-19 Data Bump and the Future of Data Growth (Doc US44797920); IDC: Singapore, 2020. [Google Scholar]
- Grant, S.G.N. The synaptomic theory of behavior and brain disease. Cold Spring Harb. Symp. Quant. Biol. 2019, 83, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 2017, 20, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, J.; Yamaura, H.; Yamazaki, T. Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method. Front. Neuroinform. 2019, 13, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Haas, L.F. Hans Berger (1873-1941), Richard Caton (1842-1926), and Electroencephalography. J. Neur. Neurosurg. Psychia. 2003, 74, 9. [Google Scholar] [CrossRef] [Green Version]
- Fields, R.D. The Other Brain: From Dementia to Schizophrenia, How New Discoveries about the Brain Are Revolutionizing Medicine and Science; Simon and Schuster: New York, NY, USA, 2009. [Google Scholar]
- Nunez, P.L. The brain wave equation: A model for the EEG. Math Biosci. 1974, 21, 279–297. [Google Scholar] [CrossRef]
- Kiani, B.T.; Villanyi, A.; Lloyd, S. Quantum Medical Imaging Algorithms. arXiv 2021, arXiv:2004.02036. [Google Scholar]
- Gandhi, V.; Prasad, G.; Coyle, D.; Behera, L.; McGinnity, T.M. Quantum neural network-based EEG filtering for a brain-computer Interface. IEEE Trans. Neur. Net. Learn. Sys. 2014, 25, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Miranda, E.R.; Venkatesh, S.; Hernani-Morales, C.; Lamata, L.; Martín-Guerrero, J.D.; Solano, E. Quantum Brain Networks: A Perspective. arXiv 2021, arXiv:2106.12295v1. [Google Scholar]
- Koch, M.; Geraedts, V.; Wang, H.; Tannemaat, M.; Balck, T. 2019 Automated machine learning for EEG-based classification of Parkinson’s disease patients. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019. [Google Scholar]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef]
- Farhi, E.; Neven, H. Classification with quantum neural networks on near term processors. MIT-CTP 2018, 4985, 1–21. [Google Scholar]
- Grant, E.; Benedetti, M.; Cao, S.; Hallam, A.; Lockhart, J.; Stojevic, V.; Green, A.G.; Severini, S. Hierarchical Quantum Classifiers. npj Quant. Inf. 2018, 4, 65. [Google Scholar] [CrossRef] [Green Version]
- Schuld, M.; Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 2019, 122, 040504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacchino, F.; Macchiavello, C.; Gerace, D.; Bajoni, D. An artificial neuron implemented on an actual quantum processor. npj Quant. Inf. 2019, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Aishwarya, S.; Abeer, V.; Sathish, B.B.; Subramanya, K.N. Quantum Computational Techniques for Prediction of Cognitive State of Human Mind from EEG Signals. J. Quant. Comput. 2020, 2, 157–170. [Google Scholar] [CrossRef]
- Taha, S.M.R.; Taha, Z.K. EEG signals classification based on autoregressive and inherently quantum recurrent neural network. Int. J. Comput. Appl. Tech. 2018, 58, 340. [Google Scholar] [CrossRef]
- Benjamin, B.V.; Gao, P.; McQuinn, E.; Choudhary, S.; Chandrasekaran, A.R.; Bussat, J.-M.; Alvarez-Icaza, R.; Arthur, J.V.; Merolla, P.A.; Boahen, K. Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations. Proc. IEEE 2014, 102, 699–716. [Google Scholar] [CrossRef]
- Gotetia, U.S.; Zaluzhnyya, I.A.; Ramanathanb, S.; Goteti, U.S.; Zaluzhnyy, I.A.; Ramanathan, S.; Dynes, R.C.; Frano, A. Low-temperature emergent neuromorphic networks with correlated oxide devices. Proc. Natl. Acad. Sci. USA 2021, 118, e2103934118. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.L.; Donnelly, C.A.; Haygood, I.W.; Wynn, A.; Russek, S.E.; Castellanos-Beltran, M.A.; Dresselhaus, P.D.; Hopkins, P.F.; Pufall, M.R.; Rippard, W.H. Synaptic weighting in single flux quantum neuromorphic computing. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zeng, Y.; Zhang, T. Quantum superposition inspired spiking neural network. iScience 2021, 24, 102880. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, R.; Xu, R.; Luo, J. A quantum mechanics-based framework for EEG signal feature extraction and classification. IEEE Trans. Emerg. Top. Comput. 2020, 1. [Google Scholar] [CrossRef]
- Ramos, A.C.; Vellasco, M. Quantum-inspired evolutionary algorithm for feature selection in motor imagery EEG classification. IEEE Cong. Evol. Comput. 2018, 1–8. [Google Scholar]
- Aljazaery, I.A.; Ali, A.A.; Abdulridha, H.M. Classification of Electroencephalograph (EEG) Signals Using Quantum Neural Network. Sig. Proc. Int. J. 2011, 4, 329–337. [Google Scholar]
- Melkonian, D. Quantum Theory of EEG with Application to the Single-Trial ERP Analysis. OBM Neurobiol. 2020, 5, 39. [Google Scholar] [CrossRef]
- Ingber, L. Quantum Calcium-Ion Interactions with EEG. Science 2019, 1, 20. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Sotiras, A.; Milchenko, M.; LaMontagne, P.; Hileman, M.; Marcus, D. MRI-based Identification and Classification of Major Intracranial Tumor Types Using a 3D Convolutional Neural Network: A Retrospective Multi-Institutional Analysis. Radiology AI 2021, 3, e200301. [Google Scholar] [CrossRef] [PubMed]
- Konar, D.; Bhattacharyya, S.; Panigrahi, B.K.; Behrman, E.C. Qutrit-inspired fully self-supervised shallow quantum learning network for brain tumor segmentation. IEEE Trans. Neur. Net. Learn. Syst. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Frydryszak, A.; Jakobczyk, L.; Lugiewicz, P. Determining quantum correlations in bipartite systems—From qubit to qutrit and beyond. J. Phys. Conf. Ser. 2017, 804, 012016. [Google Scholar] [CrossRef]
- Hasan, A.M.; Jalab, H.A.; Ibrahim, R.W.; Meziane, F.; Al-Shamasneh, A.R.; Obaiys, S.J. MRI Brain Classification Using the Quantum Entropy LBP and Deep-Learning-Based Features. Entropy 2020, 22, 1033. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Sharifi, A.; Hassantabar, S.; Enayati, S. QAIS-DSNN: Tumor Area Segmentation of MRI Image with Optimized Quantum Matched-Filter Technique and Deep Spiking Neural Network. BioMed Res. Int. 2021, 2021, 6653879. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, K.; Srivastava, P.R. Quantum algorithm for quicker clinical prognostic analysis: An application and experimental study using CT scan images of COVID-19 patients. BMC Med Informatics Decis. Mak. 2021, 21, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Petrella, C.; Di Certo, M.G.; Barbato, C.; Gabanella, F.; Ralli, M.; Greco, A.; Possenti, R.; Severini, C. Neuropeptides in Alzheimer’s Disease: An Update. Curr. Alzheimer Res. 2019, 16, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Outeiral, C.; Morris, G.M.; Shi, J.; Strahm, M.; Benjamin, S.C.; Deane, C.M. Investigating the potential for a limited quantum speedup on protein lattice problems. New J. Phys. 2021, 23, 103030. [Google Scholar] [CrossRef]
- Robert, A.; Barkoutsos, P.K.; Woerner, S.; Tavernelli, I. Resource-efficient quantum algorithm for protein folding. npj Quant. Inf. 2021, 7, 38. [Google Scholar] [CrossRef]
- Casares, P.A.M.; Campos, R.; Martin-Delgado, M.A. QFold: Quantum Walks and Deep Learning to Solve Protein Folding. arXiv 2021, arXiv:2101.10279. [Google Scholar]
- Yuen, H.; Shimojo, F.; Zhang, K.J.; Nomura, K.I.; Kalia, R.K.; Nakano, A.; Vashishta, P. DNA Sequencing via Quantum Mechanics and Machine Learning. Int. J. Comput. Sci. 2010, 4, 352–370. [Google Scholar]
- Sarkar, A.; Al-Ars, Z.; Bertels, K. QuASeR: Quantum Accelerated de novo DNA sequence reconstruction. PLoS ONE 2021, 16, e0249850. [Google Scholar] [CrossRef] [PubMed]
- Boev, A.S.; Rakitko, A.S.; Usmanov, S.R.; Kobzeva, A.N.; Popov, I.V.; Ilinsky, V.V.; Fedorov, A.K. Genome assembly using quantum and quantum-inspired annealing. Sci. Rep. 2021, 11, 13183. [Google Scholar] [CrossRef] [PubMed]
- Li, R.Y.; Di Felice, R.; Rohs, R.; Lidar, D.A. Quantum annealing versus classical machine learning applied to a simplified computational biology problem. npj Quant. Inf. 2018, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kathuria, K.; Ratan, A.; McConnell, M.; Bekiranov, S. Implementation of a Hamming distance-like genomic quantum classifier using inner products on ibmqx2 and ibmq 16 melbourne. Quant. Mach. Intell. 2020, 2, 1–26. [Google Scholar]
- Sergioli, G.; Militello, C.; Rundo, L.; Minafra, L.; Torrisi, F.; Russo, G.; Giuntini, R. A quantum-inspired classifier for clonogenic assay evaluations. Sci. Rep. 2021, 11, 2830. [Google Scholar] [CrossRef]
- Thomasian, N.M.; Kamel, I.R.; Bai, H.Z. Machine intelligence in non-invasive endocrine cancer diagnostics. Nat. Rev. Endocrin. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Swan, M. Blockchain: Blueprint for a New Economy; O’Reilly Media: Sebastopol, CA, USA, 2015. [Google Scholar]
- Grishin, D.; Obbad, K.; Church, G.M. Data privacy in the age of personal genomics. Nat. Biotech. 2019, 37, 1110–1117. [Google Scholar] [CrossRef]
- Pennic, F. Nebula Genomics Launches World’s First Genomic NFT—Blockchain. HIT Consultant. 27 May 2021. Available online: https://hitconsultant.net/2021/05/27/nebula-genomics-launches-worlds-first-genomic-nft-blockchain (accessed on 15 December 2021).
- Tohoku University (ToMMo and Tohoku University Hospital). World’s First Quantum Cryptography Transmission of Whole Genome Sequence Data Opens Up Practical Applications. Press Release. 6 February 2020. Available online: https://www.tohoku.ac.jp/en/news/university_news/worlds_first_quantum_cryptography_transmission_of_whole_genome_sequence_data.html (accessed on 15 December 2021).
- Bradley, T.-D.; Stoudenmire, E.M.; Terilla, J. Modeling Sequences with Quantum States: A Look Under the Hood. Mach. Learn. Sci. Technol. 2020, 1, 035008. [Google Scholar] [CrossRef] [Green Version]
- Basieva, I.; Khrennikov, A.; Ozawa, M. Quantum-like modeling in biology with open quantum systems and instruments. BioSyst. 2021, 201, 104328. [Google Scholar] [CrossRef] [PubMed]
- Buice, M.A.; Cowan, J.D. Statistical Mechanics of the Neocortex. Prog. Biophys. Mol. Biol. 2009, 99, 53–86. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.S.T. Quantum Finance: Intelligent Forecast and Trading Systems; Springer: Singapore, 2020. [Google Scholar]
- Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Khrennikov, A. Probability and Randomness: Quantum Versus Classical; Imperial College Press: London, UK, 2016. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Fuchs, C.A.; Schack, R. A quantum-Bayesian route to quantum-state space. Found. Phys. 2011, 41, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.; Yalmato, I. Quantum Information Biology: From information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology. Found. Phys. 2015, 45, 1362–1378. [Google Scholar] [CrossRef] [Green Version]
- Byrne, A.; Avitabile, D.; Coombes, S. A next generation neural field model. Phys. Rev. E 2019, 99, 012313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coombes, S. Waves, bumps, and patterns in neural field theories. Biol. Cybern. 2005, 93, 91–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowan, J.D.; Neuman, J.; van Drongelen, W. Wilson-Cowan Equations for Neocortical Dynamics. J. Math. Neurosci. 2016, 6, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kass, R.E.; Amari, S.-I.; Arai, K.; Brown, E.N.; Diekman, C.O.; Diesmann, M.; Doiron, B.; Eden, U.T.; Fairhall, A.L.; Fiddyment, G.M.; et al. Computational Neuroscience: Mathematical and Statistical Perspectives. Ann. Rev. Stat. Appl. 2018, 5, 183–214. [Google Scholar] [CrossRef] [PubMed]
- Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.; Yalmato, I. A model of epigenetic evolution based on theory of open quantum systems. Syst. Synth. Biol. 2013, 7, 161–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khrennikov, A.; Asano, M. A quantum-like model of information processing in the brain. Appl. Sci. 2020, 10, 707. [Google Scholar] [CrossRef] [Green Version]
- Nunez, P.L.; Nunez, M.D.; Srinivasan, R. Multi-Scale Neural Sources of EEG: Genuine, Equivalent, and Representative. A Tutorial Review. Brain Topogr. 2019, 32, 193–214. [Google Scholar] [CrossRef]
- Davis, Z.W.; Benigno, G.B.; Fletterman, C.; Desbordes, T.; Steward, C.; Sejnowski, T.J.; Reynolds, J.H.; Muller, L. Spontaneous traveling waves naturally emerge from horizontal fiber time delays and travel through locally asynchronous-irregular states. Nat. Commun. 2021, 12, 6057. [Google Scholar] [CrossRef]
- Nunez, P.L.; Srinivasan, R.; Fields, R.D. EEG functional connectivity, axon delays and white matter disease. Clin. Neurophysiol. 2015, 126, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Budzinski, R.C.; Nguyen, T.T.; Doan, J.; Minac, J.; Sejnowski, T.J.; Muller, L.E. Geometry unites synchrony, chimeras, and waves in nonlinear oscillator networks. arXiv 2021, arXiv:2111.02560v2. [Google Scholar]
- Bragina, L.; Conti, F. Expression of Neurofilament Subunits at Neocortical Glutamatergic and GABAergic Synapses. Front. Neuroanat. 2018, 12. [Google Scholar] [CrossRef]
- Singh, P.; Saxena, K.; Sahoo, P.; Ghosh, S.; Bandyopadhyay, A. Electrophysiology using coaxial atom probe array: Live imaging reveals hidden circuits of a hippocampal neural network. J. Neurophysiol. 2021. [Google Scholar] [CrossRef]
- Singh, P.; Sahoo, P.; Ghosh, S.; Saxena, K.; Manna, J.S.; Ray, K.; Krishnananda, S.D.; Poznanski, R.R.; Bandyopadhyay, A. Filaments and four ordered structures inside a neuron fire a thousand times faster than the membrane: Theory and experiment. J. Integr. Neurosci. 2021, 20, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Sahoo, P.; Saxena, K.; Manna, J.; Ray, K.; Ghosh, S.; Bandyopadhyay, A. Cytoskeletal Filaments Deep Inside a Neuron Are not Silent: They Regulate the Precise Timing of Nerve Spikes Using a Pair of Vortices. Symmetry 2021, 13, 821. [Google Scholar] [CrossRef]
- Yuan, A.; Nixon, R.A. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Meeter, L.; Dopper, E.G.; Jiskoot, L.C.; Sanchez-Valle, R.; Graff, C.; Benussi, L.; Ghidoni, R.; Pijnenburg, Y.A.; Borroni, B.; Galimberti, D.; et al. Neurofilament light chain: A biomarker for genetic frontotemporal dementia. Ann. Clin. Transl. Neurol. 2016, 3, 623–636. [Google Scholar] [CrossRef] [PubMed]
- Laucht, A.; Hohls, F.; Ubbelohde, N.; Gonzalez-Zalba, M.F.; Reilly, D.J.; Stobbe, S.; Schröder, T.; Scarlino, P.; Koski, J.V.; Dzurak, A.; et al. Roadmap on quantum nanotechnologies. Nanotechnology 2021, 32, 1–47. [Google Scholar] [CrossRef]
- Kaarsberg, T. Innovations in Scanning Tunneling Microscope Control Systems for High-Throughput Atomically Precise Manufacturing; U.S. Department of Energy, Advanced Manufacturing Office: Washington, DC, USA, 2019.
- Randall, J.N.; Owen, J.H.; Fuchs, E.; Lake, J.; Von Ehr, J.R.; Ballard, J.; Henriksen, E. Digital atomic scale fabrication an inverse Moore’s Law: A path to atomically precise manufacturing. Micro Nano Engineering. 2018, 1, 1–14. [Google Scholar] [CrossRef]
- Luo, L. Architectures of neuronal circuits. Science 2021, 373, eabg7285. [Google Scholar] [CrossRef]
- Li, W.; Qiu, J.; Li, X.L.; Aday, S.; Zhang, J.; Conley, G. BBB pathophysiology–independent delivery of siRNA in traumatic brain injury. Sci. Adv. 2021, 7, eabd6889. [Google Scholar] [CrossRef]
- Hanafy, A.S.; Schoch, S.; Lamprecht, A. CRISPR/Cas9 Delivery Potentials in Alzheimer’s Disease Management: A Mini Review. Pharmaceutics 2020, 12, 801. [Google Scholar] [CrossRef]
- Gottesman, D.; Kitaev, A.; Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 2001, 64, 012310. [Google Scholar] [CrossRef] [Green Version]
- Chamberland, C.; Noh, K.; Arrangoiz-Arriola, P.; Campbell, E.T.; Hann, C.T.; Iverson, J. Building a fault-tolerant quantum computer using concatenated cat codes. arXiv 2021, arXiv:2012.04108. [Google Scholar]
- Albert, V.V.; Covey, J.P.; Preskill, J. Robust encoding of a qubit in a molecule. Phys. Rev. X 2020, 10, 031050. [Google Scholar] [CrossRef]
- Leinen, P.; Esders, M.; Schütt, K.T.; Wagner, C.; Müller, K.R.; Tautz, F.S. Autonomous robotic nanofabrication with reinforcement learning. Sci. Adv. 2020, 6, eabb6987. [Google Scholar] [CrossRef]
- Poirazi, P.; Papoutsi, A. Illuminating dendritic function with computational models. Nat. Rev. Neurosci. 2020, 21, 303–321. [Google Scholar] [CrossRef] [PubMed]
- Tikidji-Hamburyan, R.A.; Narayana, V.; Bozkus, Z.; El-Ghazawi, T.A. Software for Brain Network Simulations: A Comparative Study. Front. Neuroinform. 2017, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.R.; Atkinson, S.E. Dendritic Synaptic Integration in Central Neurons. Curr. Biol. 2018, 18, R1045–R1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spruston, N.; Stuart, G.; Hausser, M. Dendrites, 3rd ed.; Oxford University Press: Oxford, UK, 2016; pp. 1–78. [Google Scholar]
- Swan, M.; dos Santos, R.P.; Lebedev, M.; Witte, F. Quantum Computing for the Brain; World Scientific: London, UK, 2022. [Google Scholar]
- Han, X.; Hartnoll, S.A. Deep Quantum Geometry of Matrices. Phys. Rev. X 2020, 10, 011069. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J. The large N limit of superconformal field theories and supergravity. J. Theor. Phys. 1999, 38, 1113–1133. [Google Scholar] [CrossRef] [Green Version]
- Natsuume, M. AdS/CFT Duality User Guide; Springer: London, UK, 2016. [Google Scholar]
- Sachdev, S. Strange metals and the AdS/CFT correspondence. J. Stat. Mech. 2010, 1011, P11022. [Google Scholar] [CrossRef]
- Harlow, D.; Ooguri, H. Constraints on symmetry from holography. Phys. Rev. Lett. 2019, 122, 191601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J. Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence. J. High Energ. Phys. 2015, 1506, 149. [Google Scholar] [CrossRef]
- Gross, D.J.; Rosenhaus, V. The bulk dual of SYK: Cubic couplings. J. High Energ. Phys. 2017, 1705, 92. [Google Scholar] [CrossRef]
- Vidal, G. Entanglement renormalization. Phys. Rev. Lett. 2007, 99, 220405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Else, D.W.; Monroe, C.; Nayak, C.; Yao, N.Y. Discrete Time Crystals. Ann. Rev. Cond. Matt. Phys. 2020, 11, 467–499. [Google Scholar] [CrossRef] [Green Version]
- Coombes, S.; Lai, Y.M.; Şayli, M.; Thul, R. Networks of piecewise linear neural mass models. Eur. J. Appl. Math. 2018, 29, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Kendon, V. How to Compute Using Quantum Walks. EPTCS 2020, 315, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gomez, C. Black Holes as Critical Point of Quantum Phase Transition. Eur. Phys. J. C 2014, 74, 2752. [Google Scholar] [CrossRef] [Green Version]
- Hartnoll, S.A.; Horowitz, G.T.; Kruthoff, J.; Santos, J.E. Diving into a holographic superconductor. SciPost. Phys. 2021, 10, 9. [Google Scholar]
- Arbab, A.I. Massive photons propagation in gravitational field. Preprints.Org. 2018, 2018080236. [Google Scholar]
- Faulkner, T.R.; Guica, M.; Hartman, T.; Myers, R.C.; Van Raamsdonk, M. Gravitation from Entanglement in Holographic CFTs. J. High Energ. Phys. 2014, 1403, 51. [Google Scholar] [CrossRef] [Green Version]
- Swingle, B.; Bentsen, G.; Schleier-Smith, M.; Hayden, P. Measuring the scrambling of quantum information. Phys. Rev. A 2016, 94, 040302. [Google Scholar] [CrossRef] [Green Version]
- Belyansky, R.; Bienias, P.; Kharkov, Y.A.; Gorshkov, A.V.; Swingle, B. A Minimal Model for Fast Scrambling. arXiv 2020, arXiv:2005.05362v2. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, B.; Tozzi, A.; Cooray, G.K.; Douglas, P.K.; Friston, K.J. Towards a Neuronal Gauge Theory. PLoS Biol. 2016, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Lynn, C.W.; Cornblath, E.J.; Papadopoulos, L.; Bertolero, M.A.; Bassett, D.S. Broken detailed balance and entropy production in the human brain. arXiv 2021, arXiv:2005.02526. [Google Scholar] [CrossRef]
- Barch, D.M.; Burgess, G.C.; Harms, M.P.; Petersen, S.E.; Schlaggar, B.L.; Corbetta, M. Function in the human connectome: Task-fMRI and individual differences in behavior. Neuroimage 2013, 80, 169–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weninger, L.; Srivastava, P.; Zhou, D.; Kim, J.Z.; Cornblath, E.J.; Bertolero, M.A. The information content of brain states is explained by structural constraints on state energetics. arXiv 2021, arXiv:2110.13781v1. [Google Scholar]
- Bassett, D.S.; Zurn, P.; Gold, J.I. On the Nature and Use of Models in Network Neuroscience. Nat. Rev. Neurosci. 2018, 19, 566–578. [Google Scholar] [CrossRef]
- Lynn, C.W.; Bassett, D.S. The physics of brain network structure, function and control. Nat. Rev. Phys. 2019, 1, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Lynn, C.W.; Bassett, D.S. Compressibility of complex networks. arXiv 2021, arXiv:2011.08994. [Google Scholar]
- Papadopoulos, L.; Lynn, C.W.; Battaglia, D.; Bassett, D.S. Relations between large-scale brain connectivity and effects of regional stimulation depend on collective dynamical state. PLoS Comput. Biol. 2020, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Aqil, M.; Atasoy, S.; Kringelbach, M.L.; Hindriks, R. Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome. PLoS Comput. Biol. 2020, 17, e1008310. [Google Scholar] [CrossRef]
- Carrozza, S.; Harribey, S. Melonic large N limit of 5-index irreducible random tensors. arXiv 2021, arXiv:2104.03665v1. [Google Scholar] [CrossRef]
- Benedetti, D.; Gurau, R.; Harribey, S.; Lettera, D. The F-theorem in the melonic limit. arXiv 2021, arXiv:2111.11792v1. [Google Scholar]
- Ramdas, T.; Mel, B.W. Optimizing a Neuron for Reliable Dendritic Subunit Pooling. Neurosci. 2021, in press. [Google Scholar] [CrossRef]
- Cugno, A.; Bartol, T.M.; Sejnowski, T.J.; Iyengar, R.; Rangamani, P. Geometric principles of second messenger dynamics in dendritic spines. Sci. Rep. 2019, 9, 11676. [Google Scholar] [CrossRef] [Green Version]
- Mendelsohn, R.; Garcia, G.C.; Bartol, T.M.; Lee, C.T.; Khandelwal, P.; Liu, E.; Spencer, D.J.; Husar, A.; Bushong, E.A.; Phan, S.; et al. Morphological principles of neuronal mitochondria. J. Comp. Neurol. 2021, in press. [Google Scholar] [CrossRef]
- Sameti, M.; Castello, P.R.; Lanoue, M.; Karpova, T.; Martino, C.F. Assessing Bioenergetic Function in Response to Reactive Oxygen Species in Neural Cells. React. Oxyg. Species 2021, 11, r14–r22. [Google Scholar] [CrossRef]
- Preskill, J. Quantum computing 40 years later. arXiv 2021, arXiv:2106.10522. [Google Scholar]
- Khrennikov, A.; Basieva, I.; Dzhafarov, E.N.; Busemeyer, J.R. Quantum Models for Psychological Measurements: An Unsolved Problem. PLoS ONE 2014, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- White, L.C.; Pothos, E.M.; Busemeyer, J.R. Sometimes it does hurt to ask: The constructive role of articulating impressions. Cognition 2014, 133, 1. [Google Scholar] [CrossRef] [PubMed]
- Ringbauer, M.; Costa, F.; Goggin, M.E.; White, A.G.; Fedrizzi, A. Multi-time quantum correlations with no spatial analog. npj Quant. Inf. 2018, 4, 37. [Google Scholar] [CrossRef]
- Lin, H.W.; Maldacena, J.; Zhao, Y. Symmetries near the horizon. J. High Energ. Phys. 2019, 819, 49. [Google Scholar] [CrossRef] [Green Version]
- Fazelpour, S.; Thompson, E. The Kantian brain: Brain dynamics from a neurophenomenological perspective. Curr. Opin. Nuerobiol. 2015, 31, 223–229. [Google Scholar] [CrossRef]
- Hepp, K. Space, Time, Categories, Mechanics, and Consciousness: On Kant and Neuroscience. J. Stat. Phys. 2020, 180, 896–909. [Google Scholar] [CrossRef]
- Winfree, A.T. The Geometry of Biological Time; Springer-Verlag: Berlin, Germany, 1980. [Google Scholar]
- Swan, M.; dos Santos, R.P.; Witte, F. Quantum Information Science. IEEE Internet Comput. 2022, 26, 7–14. [Google Scholar] [CrossRef]
No. | Level | Size (Decimal) | Size (m) | Size (m) |
---|---|---|---|---|
1 | Nervous system | 1 | >1 m | 100 |
2 | Subsystem | 0.1 | 10 cm | 10−1 |
3 | Neural network | 0.01 | 1 cm | 10−2 |
4 | Microcircuit | 0.001 | 1 nm | 10−3 |
5 | Neuron | 0.000 1 | 100 μm | 10−4 |
6 | Dendritic arbor | 0.000 01 | 10 μm | 10−5 |
7 | Synapse | 0.000 001 | 1 μm | 10−6 |
8 | Signaling pathway | 0.000 000 001 | 1 nm | 10−9 |
9 | Ion channel | 0.000 000 000 001 | 1 pm | 10−12 |
1. Waves, Protein Folding, Genomics | 2. Neural Dynamics | 3. Neuroscience Physics |
---|---|---|
Waves | Superpositioned Data | AdS/Neuroscience |
▪Quantum EEG | Quantum Probability | ▪AdS/Brain |
▪Quantum MRI | ▪Updating (QBism) | ▪AdS/Memory |
Quantum Protein Folding | Neural Field Theories | ▪AdS/Superconducting |
Quantum Genomics | ▪Synchrony | ▪AdS/Energy |
▪Sequencing | Filamentary Dynamics | Neuronal Gauge Theories |
▪Gene Expression | Quantum Nanoscience | Network Neuroscience |
▪Secure Transmission | ▪Nanoparticle Fab | Random Tensors |
Quantum SNNs | ▪Molecular Codes | ▪Melonic Diagrams |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swan, M.; dos Santos, R.P.; Witte, F. Quantum Neurobiology. Quantum Rep. 2022, 4, 107-126. https://doi.org/10.3390/quantum4010008
Swan M, dos Santos RP, Witte F. Quantum Neurobiology. Quantum Reports. 2022; 4(1):107-126. https://doi.org/10.3390/quantum4010008
Chicago/Turabian StyleSwan, Melanie, Renato P. dos Santos, and Franke Witte. 2022. "Quantum Neurobiology" Quantum Reports 4, no. 1: 107-126. https://doi.org/10.3390/quantum4010008
APA StyleSwan, M., dos Santos, R. P., & Witte, F. (2022). Quantum Neurobiology. Quantum Reports, 4(1), 107-126. https://doi.org/10.3390/quantum4010008