# Noise-Assisted Discord-Like Correlations in Light-Harvesting Photosynthetic Complexes

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Model

#### Quantum Correlations

## 3. Results

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

ENAQT | Environment assisted quantum transport |

LQU | Local quantum uncertainty |

${\Phi}_{LQU}$ | Flux of local quantum uncertainty |

## Appendix A

## References

- Stegmann, T.; Szpak, N. Current flow paths in deformed graphene: From quantum transport to classical trajectories in curved space. New J. Phys.
**2016**, 18, 053016. [Google Scholar] [CrossRef][Green Version] - Veldhorst, M.; Snelder, M.; Hoek, M.; Gang, T.; Guduru, V.; Wang, X.; Zeitler, U.; van der Wiel, W.G.; Golubov, A.; Hilgenkamp, H.; et al. Josephson supercurrent through a topological insulator surface state. Nat. Mater.
**2012**, 11, 417–421. [Google Scholar] [CrossRef] [PubMed][Green Version] - Beenakker, C.; van Houten, H. Quantum transport in semiconductor nanostructures. Solid State Phys.
**1991**, 44, 1–228. [Google Scholar] - Reséndiz-Vázquez, P.; Tschernig, K.; Perez-Leija, A.; Busch, K.; León-Montiel, R.d.J. Topological protection in non-Hermitian Haldane honeycomb lattices. Phys. Rev. Res.
**2020**, 2, 013387. [Google Scholar] [CrossRef][Green Version] - Capasso, F.; Mohammed, K.; Cho, A.Y. Resonant Tunneling through Double Barriers, Perpendicular Quantum Transport Phenomena in Superlattices, and Their Device Applications; Springer: New York, NY, USA, 1988; pp. 99–115. [Google Scholar]
- Plenio, M.B.; Huelga, S.F. Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys.
**2008**, 10, 113019. [Google Scholar] [CrossRef] - Zhang, Y.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature
**2005**, 438, 201. [Google Scholar] [CrossRef][Green Version] - Morales-Curiel, L.F.; León-Montiel, R.d.J. Photochemical dynamics under incoherent illumination: Light harvesting in self-assembled molecular J-aggregates. J. Chem. Phys.
**2020**, 152, 074304. [Google Scholar] [CrossRef] [PubMed][Green Version] - León-Montiel, R.d.J.; Kassal, I.; Torres, J.P. Importance of excitation and trapping conditions in photosynthetic environment-assisted energy transport. J. Chem. Phys. B
**2014**, 118, 10588–10594. [Google Scholar] [CrossRef] - McCree, K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol.
**1971**, 9, 191–216. [Google Scholar] [CrossRef] - Sension, R.J. Quantum path to photosynthesis. Nature
**2007**, 446, 740–741. [Google Scholar] [CrossRef] [PubMed] - Engel, G.S.; Calhoun, T.R.; Read, E.L.; Ahn, T.K.; Mančal, T.; Cheng, Y.C.; Blankenship, R.E.; Fleming, G.R. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature
**2007**, 446, 782–786. [Google Scholar] [CrossRef] - Calhoun, T.R.; Ginsberg, N.S.; Schlau-Cohen, G.S.; Cheng, Y.C.; Ballottari, M.; Bassi, R.; Fleming, G.R. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Phys. Chem. B
**2009**, 113, 16291–16295. [Google Scholar] [CrossRef] - Lee, H.; Cheng, Y.C.; Fleming, G.R. Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science
**2007**, 316, 1462–1465. [Google Scholar] [CrossRef][Green Version] - Rebentrost, P.; Mohseni, M.; Kassal, I.; Lloyd, S.; Aspuru-Guzik, A. Environment-assisted quantum transport. New J. Phys.
**2009**, 11, 033003. [Google Scholar] [CrossRef] - Caruso, F.; Chin, A.W.; Datta, A.; Huelga, S.F.; Plenio, M.B. Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport. J. Chem. Phys.
**2009**, 131, 09B612. [Google Scholar] [CrossRef][Green Version] - Goldberg, O.; Meir, Y.; Dubi, Y. Vibration-Assisted and Vibration-Hampered Excitonic Quantum Transport. J. Phys. Chem. Lett.
**2018**, 9, 3143–3148. [Google Scholar] [CrossRef] [PubMed][Green Version] - Li, Z.; Ko, L.; Yang, Z.; Sarovar, M.; Whaley, K.B. Unraveling excitation energy transfer assisted by collective behaviors of vibrations. New J. Phys.
**2021**. [Google Scholar] [CrossRef] - Huang, H.L.; Wu, D.; Fan, D.; Zhu, X. Superconducting quantum computing: A review. Sci. China Inf. Sci.
**2020**, 63, 1–32. [Google Scholar] [CrossRef] - Merali, Z. Quantum computing: The power of discord. Nat. News
**2011**, 474, 24–26. [Google Scholar] [CrossRef] [PubMed] - Brookes, J.C.; Hartoutsiou, F.; Horsfield, A.P.; Stoneham, A.M. Could Humans Recognize Odor by Phonon Assisted Tunneling? Phys. Rev. Lett.
**2007**, 98, 038101. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kominis, I. Quantum relative entropy shows singlet-triplet coherence is a resource in the radical-pair mechanism of biological magnetic sensing. Phys. Rev. Res.
**2020**, 2, 023206. [Google Scholar] [CrossRef] - Ball, P. Is photosynthesis quantum-ish? Phys. World
**2018**, 31, 44–48. [Google Scholar] [CrossRef][Green Version] - Sarovar, M.; Ishizaki, A.; Fleming, G.R.; Whaley, K.B. Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys.
**2010**, 6, 462–467. [Google Scholar] [CrossRef] - Ishizaki, A.; Fleming, G.R. Quantum superpositions in photosynthetic light harvesting: Delocalization and entanglement. New J. Phys.
**2010**, 12, 055004. [Google Scholar] [CrossRef] - Whaley, K.B.; Sarovar, M.; Ishizaki, A. Quantum entanglement phenomena in photosynthetic light harvesting complexes. Procedia Chem.
**2011**, 3, 152–164. [Google Scholar] [CrossRef][Green Version] - Fassioli, F.; Olaya-Castro, A. Distribution of entanglement in light-harvesting complexes and their quantum efficiency. New J. Phys.
**2010**, 12, 085006. [Google Scholar] [CrossRef][Green Version] - Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- León-Montiel, R.d.J.; Torres, J.P. Highly efficient noise-assisted energy transport in classical oscillator systems. Phys. Rev. Lett.
**2013**, 110, 218101. [Google Scholar] [CrossRef] [PubMed][Green Version] - Fenna, R.E.; Matthews, B.W. Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature
**1975**, 258, 573. [Google Scholar] [CrossRef] - Sybesma, C.; Olson, J.M. Transfer of chlorophyl excitation energy in green photosynthetic bacteria. Proc. Natl. Acad. Sci. USA
**1963**, 49, 248. [Google Scholar] [CrossRef][Green Version] - May, V.; Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Adolphs, J.; Renger, T. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys. J.
**2006**, 91, 2778–2797. [Google Scholar] [CrossRef][Green Version] - Chen, X.; Silbey, R.J. Excitation energy transfer in a non-Markovian dynamical disordered environment: Localization, narrowing, and transfer efficiency. J. Phys. Chem. B
**2011**, 115, 5499. [Google Scholar] [CrossRef] [PubMed] - Mohseni, M.; Shabani, A.; Lloyd, S.; Rabitz, H. Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes. J. Chem. Phys.
**2014**, 140, 035102. [Google Scholar] [CrossRef] [PubMed][Green Version] - Haken, H.; Reineker, P. The coupled coherent and incoherent motion of excitons and its influence on the line shape of optical absorption. Z. Phys.
**1972**, 249, 253. [Google Scholar] [CrossRef] - Haken, H.; Strobl, G. An exactly solvable model for coherent and incoherent exciton motion. Z. Phys. A Hadrons Nucl.
**1973**, 262, 135. [Google Scholar] [CrossRef] - Kriete, B.; Lüttig, J.; Kunsel, T.; Malỳ, P.; Jansen, T.L.; Knoester, J.; Brixner, T.; Pshenichnikov, M.S. Interplay between structural hierarchy and exciton diffusion in artificial light harvesting. Nat. Commun.
**2019**, 10, 1–11. [Google Scholar] [CrossRef] [PubMed][Green Version] - Moix, J.M.; Khasin, M.; Cao, J. Coherent quantum transport in disordered systems: I. The influence of dephasing on the transport properties and absorption spectra on one-dimensional systems. New J. Phys.
**2013**, 15, 085010. [Google Scholar] [CrossRef] - Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Ishizaki, A.; Fleming, G.R. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl. Acad. Sci. USA
**2009**, 106, 17255–17260. [Google Scholar] [CrossRef][Green Version] - Fujita, T.; Brookes, J.C.; Saikin, S.K.; Aspuru-Guzik, A. Memory-assisted exciton diffusion in the chlorosome light-harvesting antenna of green sulfur bacteria. J. Phys. Chem. Lett.
**2012**, 3, 2357–2361. [Google Scholar] [CrossRef][Green Version] - Valleau, S.; Saikin, S.K.; Yung, M.H.; Guzik, A.A. Exciton transport in thin-film cyanine dye J-aggregates. J. Chem. Phys.
**2012**, 137, 034109. [Google Scholar] [CrossRef][Green Version] - Hestand, N.J.; Tempelaar, R.; Knoester, J.; Jansen, T.L.; Spano, F.C. Exciton mobility control through sub-Å packing modifications in molecular crystals. Phys. Rev. B
**2015**, 91, 195315. [Google Scholar] [CrossRef][Green Version] - Saikin, S.K.; Shakirov, M.A.; Kreisbeck, C.; Peskin, U.; Proshin, Y.N.; Aspuru-Guzik, A. On the long-range exciton transport in molecular systems: The application to H-aggregated heterotriangulene chains. J. Phys. Chem. C
**2017**, 121, 24994–25002. [Google Scholar] [CrossRef] - Henderson, L.; Vedral, V. Classical, quantum and total correlations. J. Phys. A Math. Theor.
**2001**, 34, 6899–6905. [Google Scholar] [CrossRef] - Ollivier, H.; Zurek, W.H. Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett.
**2001**, 88, 017901. [Google Scholar] [CrossRef] [PubMed] - Dakić, B.; Lipp, Y.O.; Ma, X.; Ringbauer, M.; Kropatschek, S.; Barz, S.; Paterek, T.; Vedral, V.; Zeilinger, A.; Brukner, Č.; et al. Quantum discord as resource for remote state preparation. Nat. Phys.
**2012**, 8, 666–670. [Google Scholar] [CrossRef][Green Version] - Domínguez-Serna, F.A.; Mendieta-Jimenez, F.J.; Rojas, F. Relationship between the field local quadrature and the quantum discord of a photon-added correlated channel under the influence of scattering and phase fluctuation noise. Quantum Inf. Process.
**2017**, 16, 1–32. [Google Scholar] [CrossRef][Green Version] - Fedorova, A.; Byrnes, T.; Pyrkov, A.N. Super-quantum discord in ferromagnetic and antiferromagnetic materials. Quantum Inf. Process.
**2019**, 18, 1–11. [Google Scholar] [CrossRef][Green Version] - Singh, H.; Chakraborty, T.; Panigrahi, P.K.; Mitra, C. Experimental estimation of discord in an antiferromagnetic Heisenberg compound Cu(NO
_{3})_{2}·2.5H_{2}O. Quantum Inf. Process.**2015**, 14, 951–961. [Google Scholar] [CrossRef] - Girolami, D.; Tufarelli, T.; Adesso, G. Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett.
**2013**, 110, 240402. [Google Scholar] [CrossRef][Green Version] - Qinglong, T.; Youneng, G. Local quantum uncertainty in a two-qubit system due to classical environmental noise. Laser Phys.
**2020**, 30, 115201. [Google Scholar] - Kassal, I.; Aspuru-Guzik, A. Environment-assisted quantum transport in ordered systems. New J. Phys.
**2012**, 14, 053041. [Google Scholar] [CrossRef] - Pelzer, K.M.; Fidler, A.F.; Griffin, G.B.; Gray, S.K.; Engel, G.S. The dependence of exciton transport efficiency on spatial patterns of correlation within the spectral bath. New J. Phys.
**2013**, 15, 095019. [Google Scholar] [CrossRef][Green Version] - Manzano, D. Quantum transport in networks and photosynthetic complexes at the steady state. PLoS ONE
**2013**, 8, e57041. [Google Scholar] [CrossRef] - Anderson, P.W. Absence of Diffusion in Certain Random Lattices; World Scientific: Toh Tuck Link, Singapore, 2004; pp. 79–93. [Google Scholar]
- León-Montiel, R.d.J.; Vallés, A.; Moya-Cessa, H.M.; Torres, J.P. Coherent delocalization: Views of entanglement in different scenarios. Laser Phys. Lett.
**2015**, 12, 085204. [Google Scholar] [CrossRef] - Román-Ancheyta, R.; Çakmak, B.; León-Montiel, R.d.J.; Perez-Leija, A. Quantum transport in non-Markovian dynamically disordered photonic lattices. Phys. Rev. A
**2021**, 103, 033520. [Google Scholar] [CrossRef] - Moreira, S.V.; Marques, B.; Paiva, R.R.; Cruz, L.S.; Soares-Pinto, D.O.; Semião, F.L. Enhancing quantum transport efficiency by tuning non-Markovian dephasing. Phys. Rev. A
**2020**, 101, 012123. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**(

**a**) Schematic representation of a three-site system with energy sites ${\epsilon}_{1}=215$ ${\mathrm{cm}}^{-1}$, ${\epsilon}_{2}=220$ ${\mathrm{cm}}^{-1}$, ${\epsilon}_{3}=0$ ${\mathrm{cm}}^{-1}$ and symmetric couplings ${V}_{12}={V}_{21}=-104.1$ ${\mathrm{cm}}^{-1}$, ${V}_{13}={V}_{31}=5.1$ ${\mathrm{cm}}^{-1}$ and ${V}_{23}={V}_{32}=32.6$ ${\mathrm{cm}}^{-1}$. The initial condition is assumed to be localized in the first site, while the reaction center is connected through an irreversible loss-channel to the third site, with a transfer rate of ${\Gamma}_{\mathtt{RC}}=1.0$ ${\mathrm{ps}}^{-1}$. (

**b**) Energy transfer efficiency, $\eta $, as a function of the dephasing rate, $\gamma $. The evolution of the populations of the three sites is shown in figures (

**c**–

**e**) for $\gamma ={10}^{-6}$ ${\mathrm{ps}}^{-1}$, $\gamma =12.07$ ${\mathrm{ps}}^{-1}$ and $\gamma ={10}^{4}$ ${\mathrm{ps}}^{-1}$, respectively. The time evolution of the Local Quantum Unicertainty (LQU) is shown in (

**f**–

**h**) for the same values of dephasing as for the populations. Note that conversion between units of ${\mathrm{cm}}^{-1}$ and ${\mathrm{ps}}^{-1}$ can be realized by making use of the equivalence $\hslash \sim 5.3$ ${\mathrm{cm}}^{-1}\phantom{\rule{3.33333pt}{0ex}}\mathrm{ps}$.

**Figure 2.**Transport efficiency (blue solid line) and ${\Phi}_{LQU}$ (red dotted line) as a function of dephasing. Note that ${\Phi}_{LQU}$ reaches its maximum value in the same scale as the efficiency ($\gamma \sim $ 1–10), meaning that ENAQT and beyond-entanglement, discord-like quantum correlations are closely related.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Reséndiz-Vázquez, P.; Román-Ancheyta, R.; de J. León-Montiel, R.
Noise-Assisted Discord-Like Correlations in Light-Harvesting Photosynthetic Complexes. *Quantum Rep.* **2021**, *3*, 262-271.
https://doi.org/10.3390/quantum3020016

**AMA Style**

Reséndiz-Vázquez P, Román-Ancheyta R, de J. León-Montiel R.
Noise-Assisted Discord-Like Correlations in Light-Harvesting Photosynthetic Complexes. *Quantum Reports*. 2021; 3(2):262-271.
https://doi.org/10.3390/quantum3020016

**Chicago/Turabian Style**

Reséndiz-Vázquez, Pablo, Ricardo Román-Ancheyta, and Roberto de J. León-Montiel.
2021. "Noise-Assisted Discord-Like Correlations in Light-Harvesting Photosynthetic Complexes" *Quantum Reports* 3, no. 2: 262-271.
https://doi.org/10.3390/quantum3020016