Fidelity and Entropy Production in Quench Dynamics of Interacting Bosons in an Optical Lattice
Abstract
:1. Introduction
2. Methodology
2.1. Numerical Approach
2.2. Setup
2.3. Quantities of Interest
3. Results
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SF | Superfluid |
MI | Mott-insulator |
GP | Gross-Pitaevskii |
MCTDHB | Multiconfigurational time-dependent Hartree for bosons |
References
- Cazalilla, M.A.; Rigol, M. Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems. New J. Phys. 2010, 12, 055006. [Google Scholar] [CrossRef]
- Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008, 80, 885–964. [Google Scholar]
- Collura, M.; Kormos, M.; Calabrese, P. Quantum quench in a harmonically trapped one-dimensional Bose gas. Phys. Rev. A 2018, 97, 033609. [Google Scholar] [CrossRef] [Green Version]
- Polkovnikov, A.; Sengupta, K.; Silva, A.; Vengalattore, M. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 2011, 83, 863–883. [Google Scholar] [CrossRef] [Green Version]
- Greif, D.; Uehlinger, T.; Jotzu, G.; Tarruell, L.; Esslinger, T. Short-Range Quantum Magnetism of Ultracold Fermions in an Optical Lattice. Science 2013, 340, 1307–1310. [Google Scholar] [CrossRef] [Green Version]
- Fukuhara, T.; Schauß, P.; Endres, M.; Hild, S.; Cheneau, M.; Bloch, I.; Gross, C. Microscopic observation of magnon bound states and their dynamics. Nature 2013, 502, 76–79. [Google Scholar]
- Trotzky, S.; Chen, Y.A.; Flesch, A.; McCulloch, I.P.; Schollwöck, U.; Eisert, J.; Bloch, I. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 2012, 8, 325–330. [Google Scholar] [CrossRef]
- Goldstein, S.; Lebowitz, J.L.; Tumulka, R.; Zanghì, N. Long-time behavior of macroscopic quantum systems. Eur. Phys. J. H 2010, 35, 173–200. [Google Scholar] [CrossRef] [Green Version]
- Pozsgay, B.; Mestyán, M.; Werner, M.A.; Kormos, M.; Zaránd, G.; Takács, G. Correlations after Quantum Quenches in the XXZ Spin Chain: Failure of the Generalized Gibbs Ensemble. Phys. Rev. Lett. 2014, 113, 117203. [Google Scholar] [CrossRef] [Green Version]
- Ilievski, E.; De Nardis, J.; Wouters, B.; Caux, J.S.; Essler, F.H.L.; Prosen, T. Complete Generalized Gibbs Ensembles in an Interacting Theory. Phys. Rev. Lett. 2015, 115, 157201. [Google Scholar] [CrossRef] [Green Version]
- Flambaum, V.V. Time Dynamics in Chaotic Many-body Systems: Can Chaos Destroy a Quantum Computer? Aust. J. Phys. 2000, 53, 489. [Google Scholar] [CrossRef] [Green Version]
- Flambaum, V.V.; Izrailev, F.M. Entropy production and wave packet dynamics in the Fock space of closed chaotic many-body systems. Phys. Rev. E 2001, 64, 036220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, G.P.; Borgonovi, F.; Izrailev, F.M.; Smerzi, A. Irregular Dynamics in a One-Dimensional Bose System. Phys. Rev. Lett. 2004, 92, 030404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Távora, M.; Torres-Herrera, E.J.; Santos, L.F. Inevitable power-law behavior of isolated many-body quantum systems and how it anticipates thermalization. Phys. Rev. A 2016, 94, 041603. [Google Scholar] [CrossRef] [Green Version]
- Távora, M.; Torres-Herrera, E.J.; Santos, L.F. Power-law decay exponents: A dynamical criterion for predicting thermalization. Phys. Rev. A 2017, 95, 013604. [Google Scholar] [CrossRef] [Green Version]
- Greiner, M.; Mandel, O.; Esslinger, T.; Hänsch, T.; Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 2002, 415, 39–44. [Google Scholar] [CrossRef]
- Spekkens, R.W.; Sipe, J.E. Spatial fragmentation of a Bose-Einstein condensate in a double-well potential. Phys. Rev. A 1999, 59, 3868–3877. [Google Scholar] [CrossRef] [Green Version]
- Mueller, E.J.; Ho, T.L.; Ueda, M.; Baym, G. Fragmentation of Bose-Einstein condensates. Phys. Rev. A 2006, 74, 033612. [Google Scholar] [CrossRef] [Green Version]
- Penrose, O.; Onsager, L. Bose-Einstein Condensation and Liquid Helium. Phys. Rev. 1956, 104, 576–584. [Google Scholar] [CrossRef]
- Alon, O.E.; Streltsov, A.I.; Cederbaum, L.S. Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems. Phys. Rev. A 2008, 77, 033613. [Google Scholar] [CrossRef] [Green Version]
- Alon, O.E.; Streltsov, A.I.; Cederbaum, L.S. Unified view on multiconfigurational time propagation for systems consisting of identical particles. J. Chem. Phys. 2007, 127, 154103. [Google Scholar] [CrossRef] [PubMed]
- Alon, O.E.; Streltsov, A.I.; Cederbaum, L.S. Multiorbital mean-field approach for bosons, spinor bosons, and Bose-Bose and Bose-Fermi mixtures in real-space optical lattices. Phys. Rev. A 2007, 76, 013611. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Krönke, S.; Vendrell, O.; Schmelcher, P. The multi-layer multi-configuration time-dependent Hartree method for bosons: Theory, implementation, and applications. J. Chem. Phys. 2013, 139, 134103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lévêque, C.; Madsen, L.B. Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems. New J. Phys. 2017, 19, 043007. [Google Scholar] [CrossRef] [Green Version]
- Lévêque, C.; Madsen, L.B. Multispecies time-dependent restricted-active-space self-consistent-field theory for ultracold atomic and molecular gases. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 155302. [Google Scholar] [CrossRef] [Green Version]
- Mistakidis, S.I.; Schmelcher, P. Mode coupling of interaction quenched ultracold few-boson ensembles in periodically driven lattices. Phys. Rev. A 2017, 95, 013625. [Google Scholar] [CrossRef] [Green Version]
- Koutentakis, G.M.; Mistakidis, S.I.; Schmelcher, P. Quench-induced resonant tunneling mechanisms of bosons in an optical lattice with harmonic confinement. Phys. Rev. A 2017, 95, 013617. [Google Scholar] [CrossRef] [Green Version]
- Neuhaus-Steinmetz, J.; Mistakidis, S.I.; Schmelcher, P. Quantum dynamical response of ultracold few-boson ensembles in finite optical lattices to multiple interaction quenches. Phys. Rev. A 2017, 95, 053610. [Google Scholar] [CrossRef] [Green Version]
- Streltsov, A.I.; Alon, O.E.; Cederbaum, L.S. Role of Excited States in the Splitting of a Trapped Interacting Bose-Einstein Condensate by a Time-Dependent Barrier. Phys. Rev. Lett. 2007, 99, 030402. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Gammal, A.; Tsatsos, M.C.; Chatterjee, B.; Chakrabarti, B.; Lode, A.U.J. Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices. Phys. Rev. A 2018, 97, 043625. [Google Scholar] [CrossRef] [Green Version]
- Mistakidis, S.I.; Cao, L.; Schmelcher, P. Interaction quench induced multimode dynamics of finite atomic ensembles. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 225303. [Google Scholar] [CrossRef]
- Mistakidis, S.I.; Wulf, T.; Negretti, A.; Schmelcher, P. Resonant quantum dynamics of few ultracold bosons in periodically driven finite lattices. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 244004. [Google Scholar] [CrossRef] [Green Version]
- Mistakidis, S.I.; Cao, L.; Schmelcher, P. Negative-quench-induced excitation dynamics for ultracold bosons in one-dimensional lattices. Phys. Rev. A 2015, 91, 033611. [Google Scholar] [CrossRef] [Green Version]
- Plaßmann, T.; Mistakidis, S.I.; Schmelcher, P. Quench dynamics of finite bosonic ensembles in optical lattices with spatially modulated interactions. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 225001. [Google Scholar] [CrossRef] [Green Version]
- Lode, A.U.J.; Diorico, F.S.; Wu, R.; Molignini, P.; Papariello, L.; Lin, R.; Lévêque, C.; Exl, L.; Tsatsos, M.C.; Chitra, R.; et al. Many-body physics in two-component Bose–Einstein condensates in a cavity: Fragmented superradiance and polarization. New J. Phys. 2018, 20, 055006. [Google Scholar] [CrossRef]
- Weiner, S.E.; Tsatsos, M.C.; Cederbaum, L.S.; Lode, A.U.J. Phantom vortices: hidden angular momentum in ultracold dilute Bose-Einstein condensates. Sci. Rep. 2017, 7, 40122. [Google Scholar] [CrossRef] [Green Version]
- Lode, A.U.J.; Lévêque, C.; Madsen, L.B.; Streltsov, A.I.; Alon, O.E. Multiconfigurational time-dependent Hartree approaches for indistinguishable particles. arXiv 2019, arXiv:1908.03578. [Google Scholar]
- Nguyen, J.H.V.; Tsatsos, M.C.; Luo, D.; Lode, A.U.J.; Telles, G.D.; Bagnato, V.S.; Hulet, R.G. Parametric Excitation of a Bose-Einstein Condensate: From Faraday Waves to Granulation. Phys. Rev. X 2019, 9, 011052. [Google Scholar] [CrossRef] [Green Version]
- Sakmann, K.; Kasevich, M. Single-shot simulations of dynamic quantum many-body systems. Nat. Phys. 2016, 12, 451–454. [Google Scholar] [CrossRef] [Green Version]
- Lode, A.U.; Bruder, C. Fragmented Superradiance of a Bose-Einstein Condensate in an Optical Cavity. Phys. Rev. Lett. 2017, 118, 13603. [Google Scholar] [CrossRef] [Green Version]
- Mistakidis, S.I.; Katsimiga, G.C.; Kevrekidis, P.G.; Schmelcher, P. Correlation effects in the quench-induced phase separation dynamics of a two species ultracold quantum gas. New J. Phys. 2018, 20, 043052. [Google Scholar] [CrossRef]
- Erdmann, J.; Mistakidis, S.I.; Schmelcher, P. Correlated tunneling dynamics of an ultracold Fermi-Fermi mixture confined in a double well. Phys. Rev. A 2018, 98, 053614. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, B.; Lode, A.U. Order parameter and detection for a finite ensemble of crystallized one-dimensional dipolar bosons in optical lattices. Phys. Rev. A 2018, 98, 053624. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, B.; Schmiedmayer, J.; Lévêque, C.; Lode, A.U.J. Unveiling Emergent Crystal Orders of Incommensurate Dipolar Bosons in One-Dimensional Lattices using Full Distribution Functions. arXiv 2019, arXiv:1904.03966. [Google Scholar]
- Lode, A.U.J.; Tsatsos, M.C.; Fasshauer, E.; Lin, R.; Papariello, L.; Molignini, P.; Lévêque, C.; Weiner, S.E. MCTDH-X: The Time-Dependent Multiconfigurational Hartree for Indistinguishable Particles Software. Available online: http://ultracold.org (accessed on 13 July 2018).
- Lode, A.U.J. Multiconfigurational time-dependent Hartree method for bosons with internal degrees of freedom: Theory and composite fragmentation of multicomponent Bose-Einstein condensates. Phys. Rev. A 2016, 93, 063601. [Google Scholar] [CrossRef] [Green Version]
- Fasshauer, E.; Lode, A.U.J. Multiconfigurational time-dependent Hartree method for fermions: Implementation, exactness, and few-fermion tunneling to open space. Phys. Rev. A 2016, 93, 033635. [Google Scholar] [CrossRef] [Green Version]
- Lode, A.U.; Streltsov, A.I.; Sakmann, K.; Alon, O.E.; Cederbaum, L.S. How an interacting many-body system tunnels through a potential barrier to open space. Proc. Natl. Acad. Sci. USA 2012, 109, 13521–13525. [Google Scholar] [CrossRef] [Green Version]
- Lode, A.U.; Sakmann, K.; Alon, O.E.; Cederbaum, L.S.; Streltsov, A.I. Numerically exact quantum dynamics of bosons with time-dependent interactions of harmonic type. Phys. Rev. A 2012, 86, 63606. [Google Scholar] [CrossRef] [Green Version]
- Lode, A.U.J. Tunneling Dynamics in Open Ultracold Bosonic Systems; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef] [Green Version]
- Fallani, L.; De Sarlo, L.; Lye, J.E.; Modugno, M.; Saers, R.; Fort, C.; Inguscio, M. Observation of Dynamical Instability for a Bose-Einstein Condensate in a Moving 1D Optical Lattice. Phys. Rev. Lett. 2004, 93, 140406. [Google Scholar] [CrossRef] [Green Version]
- Fertig, C.D.; O’Hara, K.M.; Huckans, J.H.; Rolston, S.L.; Phillips, W.D.; Porto, J.V. Strongly Inhibited Transport of a Degenerate 1D Bose Gas in a Lattice. Phys. Rev. Lett. 2005, 94, 120403. [Google Scholar] [CrossRef] [Green Version]
- Greiner, M.; Bloch, I.; Mandel, O.; Hänsch, T.; Esslinger, T. Bose–Einstein condensates in 1D- and 2D optical lattices. Appl. Phys. B 2001, 73, 769–772. [Google Scholar] [CrossRef]
- Stöferle, T.; Moritz, H.; Schori, C.; Köhl, M.; Esslinger, T. Transition from a Strongly Interacting 1D Superfluid to a Mott Insulator. Phys. Rev. Lett. 2004, 92, 130403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olshanii, M. Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Phys. Rev. Lett. 1998, 81, 938–941. [Google Scholar] [CrossRef] [Green Version]
- Salasnich, L.; Parola, A.; Reatto, L. Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates. Phys. Rev. A 2002, 65, 043614. [Google Scholar] [CrossRef] [Green Version]
- Inouye, S.; Andrews, M.R.; Stenger, J.; Miesner, H.J.; Stamper-Kurn, D.M.; Ketterle, W. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature 1998, 392, 151–154. [Google Scholar] [CrossRef]
- Courteille, P.; Freeland, R.S.; Heinzen, D.J.; van Abeelen, F.A.; Verhaar, B.J. Observation of a Feshbach Resonance in Cold Atom Scattering. Phys. Rev. Lett. 1998, 81, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Sakmann, K.; Streltsov, A.I.; Alon, O.E.; Cederbaum, L.S. Reduced density matrices and coherence of trapped interacting bosons. Phys. Rev. A 2008, 78, 023615. [Google Scholar] [CrossRef]
- Collins, M.D. Entropy Maximizations on Electron Density. Z. Nat. A 1993, 48, 68. [Google Scholar] [CrossRef]
- Ziesche, P. Correlation strength and information entropy. Int. J. Quantum Chem. 1995, 56, 363–369. [Google Scholar] [CrossRef]
- Esquivel, R.O.; Rodríguez, A.L.; Sagar, R.P.; Hô, M.; Smith, V.H. Physical interpretation of information entropy: Numerical evidence of the Collins conjecture. Phys. Rev. A 1996, 54, 259–265. [Google Scholar] [CrossRef]
- Březinová, I.; Lode, A.U.J.; Streltsov, A.I.; Alon, O.E.; Cederbaum, L.S.; Burgdörfer, J. Wave chaos as signature for depletion of a Bose-Einstein condensate. Phys. Rev. A 2012, 86, 013630. [Google Scholar] [CrossRef] [Green Version]
- Lode, A.U.J.; Chakrabarti, B.; Kota, V.K.B. Many-body entropies, correlations, and emergence of statistical relaxation in interaction quench dynamics of ultracold bosons. Phys. Rev. A 2015, 92, 033622. [Google Scholar] [CrossRef] [Green Version]
- Tsatsos, M.C.; Lode, A.U.J. Resonances and Dynamical Fragmentation in a Stirred Bose–Einstein Condensate. J. Low Temp. Phys. 2015, 181, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Lévêque, C.; Madsen, L.B. Excitation spectra of systems of indistinguishable particles by the autocorrelation function technique: Circumventing the exponential scaling for bosons. J. Chem. Phys. 2019, 150, 194105. [Google Scholar] [CrossRef]
- Vendrell, O.; Gatti, F.; Meyer, H.D. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics. J. Chem. Phys. 2007, 127, 184303. [Google Scholar] [CrossRef] [Green Version]
- Lévêque, C.; Komainda, A.; Taïeb, R.; Köppel, H. Ab initio quantum study of the photodynamics and absorption spectrum for the coupled 11A2 and 11B1 states of SO2. J. Chem. Phys. 2013, 138, 044320. [Google Scholar] [CrossRef]
- Lévêque, C.; Peláez, D.; Köppel, H.; Taïeb, R. Direct observation of spin-forbidden transitions through the use of suitably polarized light. Nat. Commun. 2014, 5, 4126. [Google Scholar] [CrossRef] [Green Version]
- Heller, E.J. The semiclassical way to molecular spectroscopy. Acc. Chem. Res. 1981, 14, 368. [Google Scholar] [CrossRef]
- Meyer, H.D.; Manthe, U.; Cederbaum, L. The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 1990, 165, 73–78. [Google Scholar] [CrossRef]
- Beck, M.; Jäckle, A.; Worth, G.; Meyer, H.D. The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets. Phys. Rep. 2000, 324, 1–105. [Google Scholar] [CrossRef]
- Astrakharchik, G.E.; Krutitsky, K.V.; Lewenstein, M.; Mazzanti, F. One-dimensional Bose gas in optical lattices of arbitrary strength. Phys. Rev. A 2016, 93, 021605. [Google Scholar] [CrossRef] [Green Version]
- Büchler, H.P.; Blatter, G.; Zwerger, W. Commensurate-Incommensurate Transition of Cold Atoms in an Optical Lattice. Phys. Rev. Lett. 2003, 90, 130401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyl, M.; Polkovnikov, A.; Kehrein, S. Dynamical Quantum Phase Transitions in the Transverse-Field Ising Model. Phys. Rev. Lett. 2013, 110, 135704. [Google Scholar] [CrossRef] [PubMed]
- Hagymási, I.; Hubig, C.; Legeza, O.; Schollwöck, U. Dynamical Topological Quantum Phase Transitions in Nonintegrable Models. Phys. Rev. Lett. 2019, 122, 250601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
λf | Eex | tc |
---|---|---|
0.2 | 0.061 | N.A. |
1.0 | 0.263 | 4.70 |
2.0 | 0.667 | 2.56 |
5.0 | 1.878 | 1.57 |
10.0 | 3.898 | 1.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, R.; Lévêque, C.; Lode, A.U.J.; Gammal, A.; Chakrabarti, B. Fidelity and Entropy Production in Quench Dynamics of Interacting Bosons in an Optical Lattice. Quantum Rep. 2019, 1, 304-316. https://doi.org/10.3390/quantum1020028
Roy R, Lévêque C, Lode AUJ, Gammal A, Chakrabarti B. Fidelity and Entropy Production in Quench Dynamics of Interacting Bosons in an Optical Lattice. Quantum Reports. 2019; 1(2):304-316. https://doi.org/10.3390/quantum1020028
Chicago/Turabian StyleRoy, Rhombik, Camille Lévêque, Axel U. J. Lode, Arnaldo Gammal, and Barnali Chakrabarti. 2019. "Fidelity and Entropy Production in Quench Dynamics of Interacting Bosons in an Optical Lattice" Quantum Reports 1, no. 2: 304-316. https://doi.org/10.3390/quantum1020028
APA StyleRoy, R., Lévêque, C., Lode, A. U. J., Gammal, A., & Chakrabarti, B. (2019). Fidelity and Entropy Production in Quench Dynamics of Interacting Bosons in an Optical Lattice. Quantum Reports, 1(2), 304-316. https://doi.org/10.3390/quantum1020028