Information Entropy Approach for a Disorderless One-Dimensional Lattice
Abstract
:1. Introduction
2. Results
3. Discussion
4. Method
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Beenakker, C.W.J. Random matrix theory of quantum transport. Rev. Mod. Phys. 1997, 69, 731–808. [Google Scholar] [CrossRef] [Green Version]
- Alhassid, Y. The statistial theory of quantum dots. Rev. Mod. Phys. 2000, 72, 896–968. [Google Scholar] [CrossRef] [Green Version]
- Flores-Olmedo, E.; Martńez-Argüello, A.M.; Martínez-Mares, M.; Báez, G.; Franco-Villafañe, J.A.; Méndez-Sánchez, R.A. Experimental evidence of coherent transport. Sci. Rep. 2016, 6, 25157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schanze, H.; Alves, E.R.P.; Lewenkopf, C.H.; Stöckmann, H.-J. Transmission fluctuations in chaotic microwave billiards with and without time-reversal symmetry. Phys. Rev. E 2001, 64, 065201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schanze, H.; Stöckmann, H.-J.; Martínez-Mares, M.; Lewenkopf, C.H. Universal transport properties of open microwave cavities with and without time-reversal symmetry. Phys. Rev. E 2005, 71, 016223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, M.W.; Mittal, A.; Sleight, J.W.; Wheeler, R.G.; Prober, D.E.; Sacks, R.N.; Shtrikmann, H. Energy-averaged weak localization in chaotic microcavities. Phys. Rev. B 1996, 53, R1693–R1696. [Google Scholar] [CrossRef] [Green Version]
- Marcus, C.M.; Rimberg, A.J.; Westervelt, R.M.; Hopkins, P.F.; Gossard, A.C. Conductance Fluctuations and Chaotic Scattering in Ballistic Microstructures. Phys. Rev. Lett. 1992, 69, 506–509. [Google Scholar] [CrossRef]
- Chan, I.H.; Clarke, R.M.; Marcus, C.M.; Campman, K.; Gossard, A.C. Ballistic Conductance Fluctuations in Shape Space. Phys. Rev. Lett. 1995, 74, 3876–3879. [Google Scholar] [CrossRef]
- Büttiker, M. Symmetry of electrical conduction. IBM J. Res. Develop. 1988, 32, 317–334. [Google Scholar] [CrossRef]
- Mello, P.A. Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations; Oxford University Press: New York, NY, USA, 2004; pp. 244–252. [Google Scholar]
- Mello, P.A.; Baranger, H.U. Electronic transport through ballistic chaotic cavities: An information theoretic approach. Physica A 1995, 220, 15–23. [Google Scholar] [CrossRef]
- Martínez, M.; Mello, P.A. Electronic transport through ballistic chaotic cavities: Reflection symmetry, direct processes, and symmetry breaking. Phys. Rev. E 2000, 63, 016205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranger, H.U.; Mello, P.A. Mesoscopic Transport through Chaotic Cavities: A Random S-Matrix Theory Approach. Phys. Rev. Lett. 1994, 73, 142–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouwer, P.W.; Beenakker, C.W.J. Conductance distribution of a quantum dot with nonideal single-channel leads. Phys. Rev. B 1994, 50, 11263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mello, P.A.; Pereyra, P.; Seligman, T.H. Information theory and statistical nuclear reactions. I. General theory and applications to few-channel problems. Ann. Phys. 1985, 161, 254. [Google Scholar] [CrossRef]
- Friedman, W.A.; Mello, P.A. Information theory and statistical nuclear reactions II. Many-channel case and Hauser-Feshbach formula. Ann. Phys. 1985, 161, 276. [Google Scholar] [CrossRef]
- Domínguez-Rocha, V.; Méndez-Sánchez, R.A.; Martínez-Mares, M.; Robledo, A. Analytical prediction for the optical matrix. arXiv 2019, arXiv:1509.00814. [Google Scholar]
- Méndez-Sánchez, R.A.; Kuhl, U.; Barth, M.; Lewenkopf, C.H.; Stöckmann, H.-J. Distribution of reflection coefficients in absorbing chaotic microwave cavities. Phys. Rev. Lett. 2003, 91, 174102. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Argüello, A.M.; Martínez-Mares, M.; Cobián-Suárez, M.; Báez, G.; Méndez-Sánchez, R.A. A new fano resonance in measurement processes. EPL 2015, 110, 54003. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Mares, M.; Domínguez-Rocha, V.; Robledo, A. Typical length scales in conducting disorderless networks. Eur. Phys. J. Spec. Top. 2017, 226, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Rocha, V.; Martínez-Mares, M. Evolution with size in a locally periodic system: Scattering and deterministic maps. J. Phys. A Math. Theor. 2013, 46, 235101. [Google Scholar] [CrossRef]
- Martínez-Argüello, A.M.; Domínguez-Rocha, V.; Méndez-Sánchez, R.A.; Martínez-Mares, M. Experimental validation of the theoretical prediction for the optical S matrix. arXiv 2019, arXiv:1911.09205. [Google Scholar]
- Sprung, D.W.L.; Hua, W. Scattering by a finite periodic potential. Am. J. Phys. 1993, 61, 1118. [Google Scholar] [CrossRef]
- Pereyra, P. Resonant Tunneling and Band Mixing in Multichannel Superlattices. Phys. Rev. Lett. 1998, 80, 2677–2680. [Google Scholar] [CrossRef]
- Griffiths, D.J.; Steinke, C.A. Waves in locally periodic media. Am. J. Phys. 2001, 69, 137–154. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juárez-Villegas, L.A.; Martínez-Mares, M. Information Entropy Approach for a Disorderless One-Dimensional Lattice. Quantum Rep. 2020, 2, 107-113. https://doi.org/10.3390/quantum2010008
Juárez-Villegas LA, Martínez-Mares M. Information Entropy Approach for a Disorderless One-Dimensional Lattice. Quantum Reports. 2020; 2(1):107-113. https://doi.org/10.3390/quantum2010008
Chicago/Turabian StyleJuárez-Villegas, Luis Arturo, and Moisés Martínez-Mares. 2020. "Information Entropy Approach for a Disorderless One-Dimensional Lattice" Quantum Reports 2, no. 1: 107-113. https://doi.org/10.3390/quantum2010008
APA StyleJuárez-Villegas, L. A., & Martínez-Mares, M. (2020). Information Entropy Approach for a Disorderless One-Dimensional Lattice. Quantum Reports, 2(1), 107-113. https://doi.org/10.3390/quantum2010008