Influence of Tire Parameters on Contact Patch and Axle Force Generation against Short Obstacles Using DOE Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enveloping Model
2.2. Rigid Ring Model
3. Experimental Setup
3.1. DOE-Based Taguchi Analysis
Low-Speed Simulations
4. Results and Discussion
4.1. Low-Speed Experiment
4.2. High-Speed Experiment
5. Conclusions
- The study employed sensitivity analysis of control factors such as Cam shape parameter
- rs, empirical coefficients, number of cams, and rigid ring parameters.
- Sensitivity index matrices provided insights into the significant influence of these factors, guiding the optimization of tire designs for improved performance.
- The findings enhance the computational efficiency and robustness of tire–road interaction predictions, helping ride and dynamics engineers predict tire behavior more accurately and improving overall tire and vehicle dynamics performance.
- This study includes the comprehensive use of DOE methodology to optimize tire parameters and the robust analysis of sensitivity indices, which add significant value to existing research in this field.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pacejka, H. Tire and Vehicle Dynamics; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Deur, J. A brush-type dynamic tire friction model for non-uniform normal pressure distribution. IFAC Proc. Vol. 2002, 35, 409–414. [Google Scholar] [CrossRef]
- Mancosu, F.; Sangalli, R.; Cheli, F.; Ciarlariello, G.; Braghin, F. A Mathematical-physical 3D Tire Model for Handling/Comfort Optimization on a Vehicle: Comparison with Experimental Results. Tire Sci. Technol. 2000, 28, 210–232. [Google Scholar] [CrossRef]
- Schmeitz, A.; Besselink, I.; Jansen, S. Tno mf-swift. Veh. Syst. Dyn. 2007, 45, 121–137. [Google Scholar] [CrossRef]
- Barbaro, M.; Genovese, A.; Timpone, F.; Sakhnevych, A. Extension of the multiphysical magic formula tire model for ride comfort applications. Nonlinear Dyn. 2024, 112, 4183–4208. [Google Scholar] [CrossRef]
- Mottola, M.; Lovato, S.; Lot, R.; Massaro, M. The Effect of Tyre Models on the Stability and Ride Dynamics of Two-Wheeled Vehicles: MF-Tyre Vs. MF-Swift. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 20–24 August 2023; p. V001T001A011. [Google Scholar]
- Uhlar, S.; Heyder, F.; König, T. Assessment of two physical tyre models in relation to their NVH performance up to 300 Hz. Veh. Syst. Dyn. 2021, 59, 331–351. [Google Scholar] [CrossRef]
- Yu, X.; Huang, H.; Zhang, T. A theoretical three-dimensional ring based model for tire high-order bending vibration. J. Sound Vib. 2019, 459, 114820. [Google Scholar] [CrossRef]
- Brach, R.M.; Brach, R.M. Modeling Combined Braking and Steering Tire Forces; 0148-7191; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2000. [Google Scholar]
- Heinrich, G.; Klüppel, M. Rubber friction, tread deformation and tire traction. Wear 2008, 265, 1052–1060. [Google Scholar] [CrossRef]
- Patil, K.; Baqersad, J.; Behroozi, M. Experimental modal analysis on a tyre–lessons learned. Int. J. Veh. Noise Vib. 2017, 13, 200–215. [Google Scholar] [CrossRef]
- Mange, A.; Atkinson, T.; Bastiaan, J.; Baqersad, J. An optical-based technique to obtain vibration characteristics of rotating tires. SAE Int. J. Veh. Dyn. Stab. NVH 2019, 3, 197. [Google Scholar] [CrossRef]
- Patil, K.; Baqersad, J.; Bastiaan, J. Effects of Boundary Conditions and Inflation Pressure on the Natural Frequencies and 3D Mode Shapes of a Tire; 0148-7191; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Van Gennip, M.D.; Okamoto, K.; Miyanishi, K.; Kashimata, H. Effect of Tread Design Changes on Tire Patch Dynamics at High Speeds Using a Dynamic Contact Force Measurement Rig. Tire Sci. Technol. 2021, 49, 242–258. [Google Scholar] [CrossRef]
- Lee, H.; Taheri, S. Intelligent tires? A review of tire characterization literature. IEEE Intell. Transp. Syst. Mag. 2017, 9, 114–135. [Google Scholar] [CrossRef]
- Mendoza-Petit, M.F.; García-Pozuelo, D.; Díaz, V.; Olatunbosun, O. A strain-based intelligent tire to detect contact patch features for complex maneuvers. Sensors 2020, 20, 1750. [Google Scholar] [CrossRef] [PubMed]
- Pottinger, M. The Three-Dimensional Contact Patch Stress Field of Solid and Pneumatic Tires. Tire Sci. Technol. 1992, 20, 3–32. [Google Scholar] [CrossRef]
- Schütte, J.; Sextro, W. Tire Wear Reduction Based on an Extended Multibody Rear Axle Model. Vehicles 2021, 3, 233–256. [Google Scholar] [CrossRef]
- Alcázar Vargas, M.; Pérez Fernández, J.; Sánchez Andrades, I.; Cabrera Carrillo, J.A.; Castillo Aguilar, J.J. Modeling of the Influence of Operational Parameters on Tire Lateral Dynamics. Sensors 2022, 22, 6380. [Google Scholar] [CrossRef] [PubMed]
- Birajdar, V.; Baqersad, J.; Bastiaan, J.; Behroozi, M. Investigation and Development of a Slip Model for a Basic Rigid Ring Ride Model; SAE Technical Papers on CD-ROM/SAE Technical Paper Series; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Taguchi, G. Introduction to Quality Engineering; Asian Productivity Organization: Tokyo, Japan, 1986. [Google Scholar]
- Zegelaar, P.W.A. The Dynamic Response of Tyre to Brake Torque Variations and Road Unevennesses. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1998. [Google Scholar]
Percentage Variation | Level | No. of Cams | Ellipse Length (ae) [m] | Ellipse Height (be) [m] | Ellipse Order (ce) | Ellipse Shift (pls) | Ellipse Max Step (Hstep) | QRA1 | QRA2 |
---|---|---|---|---|---|---|---|---|---|
−0.15% | 1 | - | 0.94945 | 0.94163 | 1.5147 | 0.7095 | 0.02125 | 0.45526 | 0.806565 |
0% | 2 | 2 | 1.117 | 1.1078 | 1.782 | 0.8347 | 0.025 | 0.5356 | 0.9489 |
15% | 3 | 3 | 1.28455 | 1.27397 | 2.0493 | 0.95991 | 0.02875 | 0.61594 | 1.091235 |
Tires | Road Profile | Loading | |
---|---|---|---|
1 | 265/45 R21 | Trapezoidal Cleat | 6300 N |
2 | 205/60 R15 | Triangular Cleat | 2000 N |
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | Factor 7 | |||
---|---|---|---|---|---|---|---|---|---|
Level | Damp_Residual | Q_BVX | Freq_LONG | Freq_WINDUP | DAMP_LONG | DAMP_WINDUP | Belt_Mass (kg) | Belt_IXX | |
1 | 0.3 | 0 | 50 | 50 | 0.1 | 0.1 | 5.208 | 0.21896 | 0.41216 |
2 | 0.3 | 5 | 70 | 70 | 0.3 | 0.3 | 6.975 | 0.29325 | 0.552 |
3 | - | 10 | 90 | 90 | 0.5 | 0.5 | 8.928 | 0.37536 | 0.70656 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birajdar, V.; Mostafavi Yazdi, S.J.; Kandampadath, M.; Behroozi, M.; Baqersad, J. Influence of Tire Parameters on Contact Patch and Axle Force Generation against Short Obstacles Using DOE Approach. Vehicles 2024, 6, 1690-1703. https://doi.org/10.3390/vehicles6040081
Birajdar V, Mostafavi Yazdi SJ, Kandampadath M, Behroozi M, Baqersad J. Influence of Tire Parameters on Contact Patch and Axle Force Generation against Short Obstacles Using DOE Approach. Vehicles. 2024; 6(4):1690-1703. https://doi.org/10.3390/vehicles6040081
Chicago/Turabian StyleBirajdar, Vikas, Seyed Jamaleddin Mostafavi Yazdi, Madhu Kandampadath, Mohammad Behroozi, and Javad Baqersad. 2024. "Influence of Tire Parameters on Contact Patch and Axle Force Generation against Short Obstacles Using DOE Approach" Vehicles 6, no. 4: 1690-1703. https://doi.org/10.3390/vehicles6040081
APA StyleBirajdar, V., Mostafavi Yazdi, S. J., Kandampadath, M., Behroozi, M., & Baqersad, J. (2024). Influence of Tire Parameters on Contact Patch and Axle Force Generation against Short Obstacles Using DOE Approach. Vehicles, 6(4), 1690-1703. https://doi.org/10.3390/vehicles6040081