Partially Ionized Plasma Physics and Technological Applications
Abstract
1. Introduction
2. Plasma Simulation Particle-in-Cell Codes
2.1. Low-Temperature Plasma Particle-in-Cell (LTP-PIC) Code
2.2. Electrostatic Direct Implicit Particle-in-Cell 2D (EDIPIC-2D) Code
3. Results
3.1. Kinetics of Partially Ionized Plasmas
3.2. Modern Modeling Methods of the Partially Ionized Plasma
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CCP | capacitively coupled plasma |
| CIP | inductively coupled plasma |
| CPU | central processing unit |
| EDIPIC | Electrostatic Direct Implicit Particle-in-Cell |
| EEDF | electron energy distribution function |
| EVDF | electron velocity distribution function |
| GMRES | Generalized Minimal Residual (algorithm) |
| GPU | graphics processing unit |
| HPC | high-performance computing |
| Hypre | high-performance preconditioners (library) |
| KSP | Krylov subspace method |
| KSPGMRES | GMRES using KSP |
| LTP-PIC | Low-Temperature Plasma Particle-in-Cell |
| MPI | message passing interface |
| OpenMP | Open Multi-Processing |
| PC | personal computer |
| PETSc | Portable, Extensible Toolkit for Scientific computing |
| PPPL | Princeton Plasma Physics Laboratory |
| RF | radio frequency |
| 1D, 2D, 3D | one-, two-, three-dimensional |
References
- Shukla, P.K.; Stenflo, L. Nonlinear phenomena involving dispersive Alfvén waves. In Nonlinear MHD Waves and Turbulence; Passot, T., Sulem, P.-L., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–30. [Google Scholar] [CrossRef]
- Pokhotelov, O.A.; Stenflo, L.; Shukla, P.K. Nonlinear structures. Plasma Phys. Rep. 1996, 22, 852–863. [Google Scholar]
- Tendler, M. Self-organisation in plasma physics. Phys. Scr. 2004, T113, 51–55. [Google Scholar]
- Mandelbrot, B.B. The Fractal Nature of Nature; Freeman W.H. and Company: San Francisco, CA, USA, 1977; Available online: https://archive.org/details/fractalgeometryo00beno (accessed on 20 December 2025).
- Prigogine, I.; Stengers, I. Order out of Chaos: Man’s New Dialogue with Nature; Bantam Books, Inc.: New York, NY, USA, 1984; Available online: https://archive.org/details/orderoutofchaosm00prig (accessed on 20 December 2025).
- Back, P. How the Nature Works: The Science of Self-Organized Criticality; Springer Science + Business Media: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Zaslavsky, G.M. Hamiltonian Chaos & Fractional Dynamics; Oxford University Press: London, UK, 2004. [Google Scholar] [CrossRef]
- Burin, M.J.; Simmons, G.G.; Ceja, H.G.; Zweben, S.J.; Nagy, A.; Brunkhorst, C. On filament structure and propagation within a commercial plasma globe. Phys. Plasmas 2015, 22, 053509. [Google Scholar] [CrossRef]
- Alfvén, H.; Arrhenius, G. Evolution of the Solar System; Scientific and Technical Information Office, National Aeronautics and Space Administration (NASA): Washington, DC, USA, 1976. Available online: https://ntrs.nasa.gov/citations/19770006016 (accessed on 20 December 2025).
- Lehnert, B. Minimum temperature and power effect of cosmical plasmas interacting with neutral gas. Cosm. Electrodyn. 1970, 1, 397–410. [Google Scholar]
- Powis, A.T.; Villafana, W.; Kaganovich, I. Three-dimensional kinetic simulations of oscillations and anomalous electron transport in a Hall thruster. In Proceedings of the 37th International Electric Propulsion Conference, Massachusetts Institute of Technology (IEPC-2022-532), Cambridge, MA, USA, 19–23 June 2022; Available online: https://www.jotform.com/uploads/electricrocket/220994246997171/5314533868819892790/IEPC-2022-532_Powis.pdf (accessed on 20 December 2025).
- Kaganovich, I.D.; Smolyakov, A.; Raitses, Y.; Ahedo, E.; Mikellides, I.G.; Jorns, B.; Taccogna, F.; Gueroult, R.; Tsikata, S.; Bourdon, A.; et al. Physics of E × B discharges relevant to plasma propulsion and similar technologies. Phys. Plasmas 2020, 27, 120601. [Google Scholar] [CrossRef]
- Versolato, O.; Kaganovich, I.; Bera, K.; Lill, T.; Lee, H.C.; Hoekstra, R.; Sheil, J.; Nam, S.K. Plasma sources for advanced semiconductor applications. Appl. Phys. Lett. 2024, 125, 230401. [Google Scholar] [CrossRef]
- Charoy, T.; Boeuf, J.P.; Bourdon, A.; Carlsson, J.A.; Chabert, P.; Cuenot, B.; Eremin, D.; Garrigues, L.; Hara, K.; Kaganovich, I.D.; et al. 2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas. Plasma Sources Sci. Technol. 2019, 28, 105010. [Google Scholar] [CrossRef]
- Turner, M.M.; Derzi, A.; Donko, Z.; Eremin, D.; Kelly, S.J.; Lafleur, T.; Mussenbrock, T. Simulation benchmarks for low-pressure plasmas: Capacitive discharges. Phys. Plasmas 2013, 20, 013507. [Google Scholar] [CrossRef]
- Powis, A.T.; Ahedo, E.; Laguna, A.; Barléon, N.; Bello-Benítez, E.; Beving, L.; Boeuf, J.P.; Bogopolsky, G.; Bourdon, A.; Cichocki, F.; et al. Benchmark for two-dimensional large scale coherent structures in partially magnetized E × B plasmas—Community collaboration & lessons learned. arXiv 2025, arXiv:2510.21261. [Google Scholar]
- Powis, A.T.; Carlsson, J.A.; Kaganovich, I.D.; Raitses, Y.; Smolyakov, A. Scaling of spoke rotation frequency within a Penning discharge. Phys. Plasmas 2018, 25, 072110. [Google Scholar] [CrossRef]
- Falgout, R.D.; Yang, U.M. hypre: A library of high performance preconditioners. In Computational Science—ICCS 2002: International Conference, Amsterdam, The Netherlands, 21–24 April 2002; Proceedings: Part III; Sloot, P.M.A., Hoekstra, A.G., Kenneth Tan, C.J., Dongarra, J.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 632–641. [Google Scholar] [CrossRef]
- EDIPIC-2D. Available online: https://github.com/PrincetonUniversity/EDIPIC-2D (accessed on 20 December 2025).
- Sydorenko, D. Particle-in-Cell Simulations of Electron Dynamics in Low Pressure Discharges with Magnetic Fields. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada. Available online: http://hdl.handle.net/10388/etd-06142006-111353 (accessed on 20 December 2025).
- Sydorenko, D.; Kaganovich, I.D.; Khrabrov, A.V.; Ethier, S.A.; Chen, J.; Janhunen, S. Improved algorithm for a two-dimensional Darwin particle-in-cell code. Phys. Plasmas 2025, 32, 043904. [Google Scholar] [CrossRef]
- Vahedi, V.; DiPeso, G. Simultaneous potential and circuit solution for two-dimensional bounded plasma simulation codes. J. Comput. Phys. 1997, 131, 149–163. [Google Scholar] [CrossRef]
- Druyvesteyn, M.J. Der Niedervoltbogen. Z. Phys. 1930, 64, 781–798. [Google Scholar] [CrossRef]
- Druyvesteyn, M.J.; Penning, F.M. The mechanism of electrical discharges in gases of low pressure. Rev. Mod. Phys. 1940, 12, 87–174. [Google Scholar] [CrossRef]
- Stenflo, L. High field electron distribution function in GaAs. Proc. IEEE 1967, 55, 1088–1089. [Google Scholar] [CrossRef]
- Loffhagen, D.; Winkler, R. Time-dependent multi-term approximation of the velocity distribution in the temporal relaxation of plasma electrons. J. Phys. D Appl. Phys. 1996, 29, 618–627. [Google Scholar] [CrossRef]
- Stenflo, L. Oscillations of a weakly ionized plasma in a constant electric field. Plasma Phys. 1968, 10, 551–559. [Google Scholar] [CrossRef]
- Stenflo, L. Negative absorption due to collisions in a drifted electron plasma. Plasma Phys. 1968, 10, 801–803. [Google Scholar] [CrossRef]
- Godyak, V.A.; Kolobov, V.I. Negative power absorption in inductively coupled plasma. Phys. Rev. Lett. 1997, 79, 4589–4592. [Google Scholar] [CrossRef]
- Kortshagen, U.; Maresca, A.; Orlov, K.; Heil, B. Recent progress in understanding of electron kinetics of low pressure inductive plasmas. Appl. Surf. Sci. 2002, 192, 244–257. [Google Scholar] [CrossRef]
- Galerkin, B.G. Rods and plates: Series occurring in various questions concerning the elastic equilibrium of rods and plates. Vestn. Inzhen. Tekhn. [Bull. Engin. Technolog.] 1915, 19, 897–907. (In Russian) English translation: 63-18925, Clearinghouse Fed. Sci. Tech. Inform.: Spriengfield, VA, USA, 1963. [Google Scholar]
- Lyagushenko, R.; Tendler, M. Electron energy distribution in a cool molecular gas. Sov. J. Plasma Phys. 1975, 1, 458–463. [Google Scholar]
- Colonna, G. On the relevance of superelastic collisions in argon and nitrogen discharges. Plasma Sources Sci. Technol. 2020, 29, 065008. [Google Scholar] [CrossRef]
- Dyatko, N.A.; Capitelli, M.; Longo, S.; Napartovich, A.P. Negative electron mobility in a decaying plasma. Plasma Phys. Rep. 1998, 24, 691–699. [Google Scholar]
- Tsendin, L.D. Nonlocal electron kinetics in gas-discharge plasma. Phys.-Usp. 2010, 53, 133–157. [Google Scholar] [CrossRef]
- Biondi, M. Diffusion Cooling of Electrons in Ionized Gases. Phys. Rev. 1954, 93, 1136–1140. [Google Scholar] [CrossRef]
- Demidov, V.I.; DeJoseph, C., Jr.; Kudryavtsev, A. Anomalously high near-wall sheath potential drop in a plasma with nonlocal fast electron. Phys. Rev. Lett. 2005, 95, 215002. [Google Scholar] [CrossRef]
- Godyak, V.A.; Piejak, R.B.; Alexandrovich, B.M. Measurement of electron energy distribution in low-pressure RF discharges. Plasma Sci. Technol. 1992, 1, 36–58. [Google Scholar] [CrossRef]
- Buddemeier, U.; Kortshagen, U.; Pukropski, I. On the efficiency of the electron sheath heating in capacitively coupled radio frequency discharges in the weakly collisional regime. Appl. Phys. Lett. 1995, 67, 191–193. [Google Scholar] [CrossRef]
- Berezhnoi, S.V.; Kaganovich, I.; Tsendin, L. Generation of cold electrons in a low-pressure RF capacitive discharge as an analogue of a thermal explosion. Plasma Phys. Rep. 1998, 24, 556–563. [Google Scholar]
- Arslanbekov, R.R.; Kudryavtsev, A. Modeling of nonlocal slow-electron kinetics in a low-pressure negative-glow plasma. Phys. Plasmas 1999, 6, 1003–1016. [Google Scholar] [CrossRef]
- Lee, H.C. Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics. Appl. Phys. Rev. 2018, 5, 011108. [Google Scholar] [CrossRef]
- Birdsall, C.K.; Langdon, A.B. Plasma Physics via Computer Simulation; CRC Press; Taylor & Francis Group, LLC.: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Lewis, H.R. Energy-conserving numerical approximations for Vlasov plasmas. J. Comput. Phys. 1970, 6, 136–141. [Google Scholar] [CrossRef]
- Powis, A.T.; Kaganovich, I.D. Accuracy of the explicit energy-conserving particle-in-cell method for under-resolved simulations of capacitively coupled plasma discharges. Phys. Plasmas 2024, 31, 023901. [Google Scholar] [CrossRef]
- Chen, G.; Chacon, L. A multi-dimensional, energy-and charge conserving, nonlinearly implicit, electromagnetic Vlasov–Darwin particle-in cell algorithm. Comput. Phys. Commun. 2015, 197, 73–87. [Google Scholar] [CrossRef]
- Lapenta, G.; Gonzalez-Herrero, D.; Boella, E. Multiple-scale kinetic simulations with the energy conserving semi-implicit particle in cell method. J. Plasma Phys. 2017, 83, 705830205. [Google Scholar] [CrossRef]
- Sun, H.; Banerjee, S.; Sharma, S.; Tasman Powis, A.; Khrabrov, A.; Sydorenko, D.; Chen, J.; Kaganovich, I.D. Direct implicit and explicit energy-conserving particle-in-cell methods for modeling of capacitively-coupled plasma devices. Phys. Plasmas 2023, 30, 103509. [Google Scholar] [CrossRef]
- Angus, J.R.; Link, A.; Friedman, A.; Ghosh, D.; Johnson, J.D. On numerical energy conservation for an implicit particle-in-cell method coupled with a binary Monte-Carlo algorithm for Coulomb collisions. J. Comput. Phys. 2022, 456, 111030. [Google Scholar] [CrossRef]
- Eremin, D. An energy-and charge-conserving electrostatic implicit particle-in-cell algorithm for simulations of collisional bounded plasmas. J. Comput. Phys. 2022, 452, 110934. [Google Scholar] [CrossRef]
- Darwin, C.G. The dynamical motions of charged particles. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1920, 39, 537–551. [Google Scholar] [CrossRef]
- Gibbons, M.R.; Hewett, D.W. The Darwin direct implicit particle-in-cell (DADIPIC) method for simulation of low frequency plasma phenomena. J. Comput. Phys. 1995, 120, 231–247. [Google Scholar] [CrossRef]
- Hewett, D.W.; Larson, D.J.; Doss, S. Solution of simultaneous partial differential equations using dynamic adi: Solution of the streamlined darwin field equations. J. Comput. Phys. 1992, 101, 11–24. [Google Scholar] [CrossRef]
- Jubin, S.; Powis, A.T.; Villafana, W.; Sydorenko, D.; Rauf, S.; Khrabrov, A.V.; Sarwar, S.; Kaganovich, I.D. Numerical thermalization in 2D PIC simulations: Practical estimates for low temperature plasma simulations. Phys. Plasmas 2024, 31, 023902. [Google Scholar] [CrossRef]
- Shuai Cao, S.; Ren, J.; Tang, H.; Zhang, Z.; Wang, Y.; Cao, J.; Chen, Z. Numerical simulation of plasma power deposition on hollow cathode walls using particle-in-cell and Monte Carlo collision method. Phys. Plasmas 2018, 25, 103512. [Google Scholar]
- Parodi, P.; Boccelli, S.; Bariselli, F.; Magin, T.E. Pantera: A PIC-MCC-DSMC software for the simulation of rarefied gases and plasmas. SoftwareX 2025, 31, 102244. [Google Scholar] [CrossRef]
- Villafana, W.; Powis, A.T.; Sharma, S.; Kaganovich, I.D.; Khrabrov, A.V. Establishing criteria for the transition from kinetic to fluid modeling in hollow cathode analysis. Phys. Plasmas 2024, 31, 093504. [Google Scholar] [CrossRef]
- Akhiezer, A.I.; Aleksin, V.F.; Bar’yakhtar, V.G.; Peletminskii, S.V. Effect of radiation on electron relaxation and plasma conductivity in a strong magnetic field. Sov. Phys. JETP 1962, 15, 386–398. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/15/2/p386?a=list (accessed on 20 December 2025).
- Dreicer, H. Kinetic theory of an electron–photon gas. Phys. Fluids 1964, 7, 735–753. [Google Scholar] [CrossRef]
- Dupree, T.H. Kinetic theory of plasma and the electromagnetic field. Phys. Fluids 1963, 6, 1714–1729. [Google Scholar] [CrossRef]
- Sharma, S.; Sengupta, S.; Sen, A.; Khrabrov, A.; Kaganovich, I. Investigating the effects of electron bounce-cyclotron resonance on plasma dynamics in capacitive discharges operated in the presence of a weak transverse magnetic field. Phys. Plasmas 2022, 29, 063501. [Google Scholar] [CrossRef]
- Chen, J.; Powis, A.T.; Kaganovich, I.; Wang, Z.; Yu, Y. Three-Dimensional Helical-Rotating Plasma Structures in Beam-Generated Partially Magnetized Plasmas. Phys. Rev. Lett. 2025, 135, 045301. [Google Scholar] [CrossRef]
- Boeuf, J.P.; Smolyakov, A. Physics and instabilities of low-temperature E × B plasmas for spacecraft propulsion and other applications. Phys. Plasmas 2023, 30, 050901. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kaganovich, I.; Lee, H.C. Review of the gas breakdown physics and nanomaterial-based ionization gas sensors and their applications. Plasma Sources Sci. Technol. 2022, 31, 033001. [Google Scholar] [CrossRef]
- Sun, H.; Chen, J.; Kaganovich, I.D.; Khrabrov, A.; Sydorenko, D. Physical regimes of electrostatic wave-wave nonlinear interactions generated by an electron beam propagating in a background plasma. Phys. Rev. E 2022, 106, 035203. [Google Scholar] [CrossRef]
- Nuwal, N.; Levin, D.A.; Kaganovich, I. Kinetic modeling of solitary wave dynamics in a neutralizing ion beam. Phys. Plasmas 2023, 30, 012110. [Google Scholar] [CrossRef]
- Son, S.H.; Go, G.; Villafana, W.; Kaganovich, I.D.; Khrabrov, A.; Lee, H.C.; Chung, K.-J.; Chae, G.-S.; Shim, S.; Na, D.; et al. Unintended gas breakdowns in narrow gaps of advanced plasma sources for semiconductor fabrication industry. Appl. Phys. Lett. 2023, 123, 232108. [Google Scholar] [CrossRef]
- Ganta, S.; Bera, K.; Rauf, S.; Kaganovich, I.; Khrabrov, A.; Powis, T.P.; Sydorenko, D.; Xu, L. Analysis of Instabilities in Magnetized Low-pressure Capacitively-Coupled RF Plasma using particle-in-cell (PIC) simulations. Phys. Plasmas 2024, 31, 102107. [Google Scholar] [CrossRef]
- Patil, S.; Sharma, S.; Sengupta, S.; Sen, A.; Kaganovich, A.D. Electron bounce-cyclotron resonance in capacitive discharges at low magnetic field. Phys. Rev. Res. 2022, 4, 013059. [Google Scholar] [CrossRef]
- Fubiani, G.; Camenen, G.Y.; Garrigues, F.L.; Papahn Zadeh, M.; Smolyakov, A.; Tyushev, M. Impact of the radial electric field on plasma instabilities in a penning discharge: Insights from a 3D particle-in-cell model. Phys. Plasmas 2025, 32, 080704. [Google Scholar] [CrossRef]
- Powis, A.T.; Corona Rivera, D.; Khrabry, A.; Kaganovich, I.D. Accelerating kinetic plasma simulations with machine learning generated initial conditions. Phys. Plasmas 2026, 33, 013902. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kaganovich, I.; Tendler, M. Partially Ionized Plasma Physics and Technological Applications. Physics 2026, 8, 18. https://doi.org/10.3390/physics8010018
Kaganovich I, Tendler M. Partially Ionized Plasma Physics and Technological Applications. Physics. 2026; 8(1):18. https://doi.org/10.3390/physics8010018
Chicago/Turabian StyleKaganovich, Igor, and Michael Tendler. 2026. "Partially Ionized Plasma Physics and Technological Applications" Physics 8, no. 1: 18. https://doi.org/10.3390/physics8010018
APA StyleKaganovich, I., & Tendler, M. (2026). Partially Ionized Plasma Physics and Technological Applications. Physics, 8(1), 18. https://doi.org/10.3390/physics8010018

