Feynman Path Integral and Landau Density Matrix in Probability Representation of Quantum States
Abstract
1. Introduction
2. Quantizer–Dequantizer Method
3. Green Function and Feynman Path Integral
4. Example of the Evolution of Free Particle Tomogram
5. Integrals of Motion and the Green Function (Path Integral)
6. Three Methods of Calculating Tomograms
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feynman, R.P. Statistical Mechanics. A Set of Lectures; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 1998. [Google Scholar] [CrossRef]
- Landau, L. Das Dämpfungsproblem in der Wellenmechanik. Z. Phys. 1927, 45, 430–441, English translation: Landau, L.D. The damping problem in wave mechanics. In Collected Papers of L.D. Landau; Ter-Haar, D., Ed.; Pergamon Press Ltd. and Gordon and Breach, Science Publishers Inc./Elsevier Inc.: Oxford, UK, 1965; pp. 8–18.. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 1926, 384, 361–376. [Google Scholar] [CrossRef]
- Dirac, P. The Principles of Quantum Mechanics; Clarendon Press/Oxford University Press: Oxford, UK, 1930; Available online: https://archive.org/details/dli.ernet.212159 (accessed on 5 November 2025).
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Symplectic tomography as classical approach to quantum systems. Phys. Lett. A 1996, 213, 1–6. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I. Quantum states in probability representation and tomography. J. Russ. Laser Res. 1997, 18, 407–444. [Google Scholar] [CrossRef]
- Asorey, M.; Ibort, A.; Marmo, G.; Ventriglia, F. Quantum tomography twenty years later. Phys. Scr. 2015, 90, 074031. [Google Scholar] [CrossRef]
- Gosson, M.A. Symplectic Radon transform and the metaplectic Representation. Entropy 2022, 24, 761. [Google Scholar] [CrossRef]
- Przhiyalkovskiy, Y.V. Quantum process in probability representation of quantum mechanics. J. Phys. A Math. Gen. 2022, 55, 085301. [Google Scholar] [CrossRef]
- Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Husimi, K. Some formal properties of the density matrix. Proc. Phys.-Math. Soc. Jpn. 1940, 23, 264–314. [Google Scholar] [CrossRef]
- Kano, Y. A new phase-space distribution function in the statistical theory of the electromagnetic field. J. Math. Phys. 1965, 6, 1913–1915. [Google Scholar] [CrossRef]
- Glauber, R.J. Coherent and incoherent states of the radiation field. Phys. Rev. 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Equivalence of semiclassical and quantum-mechanical description of statistical light beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Blokhintsev, D.I. The Gibbs quantum ensemble and its connection with the classical ensemble. J. Phys. (USSR) 1940, 2, 71–74. [Google Scholar]
- Wootters, W.K. Quantum mechanics without probability amplitudes. Found. Phys. 1986, 16, 391–405. [Google Scholar] [CrossRef]
- Kolmogoroff, A. Grundbegriffe der Wahrscheinlichkeitsrechnung; Springer: Berlin/Heidelberg, Germany, 1933. [Google Scholar] [CrossRef]
- Holevo, A. Probabilistic and Statistical Aspects of Quantum Theory; Scuola Normale Superiore: Pisa, Italy; Springer: Basel, Switzerland, 2011. [Google Scholar] [CrossRef]
- Khrennikov, A. Probability and Randomness: Quantum Versus Classical; World Scientific Co. Pte. Ltd.: Singapore, 2016. [Google Scholar] [CrossRef]
- Khrennikov, A.; Basieva, I. Entanglement of observables: Quantum conditional probability approach. Found. Phys. 2023, 53, 84. [Google Scholar] [CrossRef]
- Khrennikov, A.; Basieva, I. Conditional probability framework for entanglement and its decoupling from tensor product structure. J. Phys. A Math. Theor. 2022, 55, 395302. [Google Scholar]
- Chernega, V.N.; Man’ko, O.V.; Man’ko, V.I. Entangled probability distributions. arXiv 2023, arXiv:2302.13065v1. [Google Scholar] [CrossRef]
- Chernega, V.N.; Man’ko, O.V. Dynamics of system states in the probability representation of quantum mechanics. Entropy 2023, 25, 785. [Google Scholar] [CrossRef]
- Giri, S.K.; Sen, B.; Pathak, A.; Jana, P.C. Higher-order two-mode and multimode entanglement in Raman processes. Phys. Rev. A 2016, 93, 012340. [Google Scholar] [CrossRef]
- Pathak, A.; Krepelka, J.; Perina, J. Nonclassicality in Raman scattering: Quantum entanglement, squeezing of vacuum fluctuations, sub-shot noise and joint photon–phonon number, and integrated-intensity distributions. Phys. Lett. A 2013, 377, 2692–2701. [Google Scholar] [CrossRef]
- Klimov, A.B.; Sanchez-Soto, L.L. Method of small rotations and effective Hamiltonians in nonlinear quantum optics. Phys. Rev. A 2000, 61, 063802. [Google Scholar] [CrossRef]
- Kuznetsov, S.V.; Kyusev, A.V.; Man’ko, O.V. Tomographic and statistical properties of superposition states for two-mode systems. SPIE Proc. 2004, 5402, 314–327. [Google Scholar] [CrossRef]
- Kuznetsov, S.V.; Man’ko, O.V.; Tcherniega, N.V. Photon distribution function, tomograms and entanglement in stimulated Raman scattering. J. Opt. B Quant. Semiclass. Opt. 2003, 5, S503–S512. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Tcherniega, N.V. Tomographic description of stimulated Brillouin scattering. J. Russ. Laser Res. 2001, 22, 201–218. [Google Scholar] [CrossRef]
- Rohith, M.; Sudheesh, C. Signatures of entanglement in an optical tomogram. J. Opt. Soc. Am. B 2016, 33, 126–133. [Google Scholar] [CrossRef]
- Facchi, P.; Ligabó, M.; Solimini, S. Tomography: Mathematical aspects and applications. Phys. Scr. 2015, 90, 074007. [Google Scholar] [CrossRef]
- Uzun, N. Hydrodynamic interpretation of generic squeezed coherent states: A kinetic theory. Ann. Phys. 2022, 442, 168900. [Google Scholar] [CrossRef]
- Shabani, A.; Khellat, F. Quantum tomographic Aubry–Mather theory. J. Math. Phys. 2023, 64, 042706. [Google Scholar] [CrossRef]
- Klimov, A.B.; Man’ko, O.V.; Man’ko, V.I.; Smirnov, Y.F.; Tolstoy, V.N. Tomographic representation of spin and quark states. J. Phys. A Math. Gen. 2002, 35, 6101. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I. Wave function in classical statistical mechanics. J. Russ. Laser Res. 2000, 22, 149–167. [Google Scholar] [CrossRef]
- Chernega, V.N.; Man’ko, V.I. Wave function of the harmonic oscillator in classical statistical mechanics. J. Russ. Laser Res. 2007, 28, 535–547. [Google Scholar] [CrossRef]
- Claeyes, P.W.; Polkovnikov, A. Quantum eigenstates from classical Gibbs distributions. SciPost Phys. 2021, 10, 014. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Evolution of classical and quantum states in the groupoid picture of quantum mechanics. Entropy 2020, 22, 1292. [Google Scholar] [CrossRef]
- Elze, H.-T.; Gambarotta, G.; Vallone, F. General linear dynamics—Quantum, classical or hybrid. J. Phys. Conf. Ser. 2011, 306, 012010. [Google Scholar] [CrossRef]
- Stornaiolo, C. Emergent classical universes from initial quantum states in a tomographical description. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 2050167. [Google Scholar] [CrossRef]
- Berra-Montiel, J.; Molgado, A. Tomography in loop quantum cosmology. Eur. Phys. J. Plus 2022, 137, 283. [Google Scholar] [CrossRef]
- Bazrafkan, M.R.; Nahvifard, E. Stationary perturbation theory in the probability representation of quantum mechanics. J. Russ. Laser Res. 2009, 30, 392–403. [Google Scholar] [CrossRef]
- Filinov, V.S.; Schubert, G.; Levashov, P.; Bonitz, M.; Fehske, H.; Fortov, V.E.; Filinov, A.V. Center-of-mass tomographic approach to quantum dynamics. Phys. Lett. A 2008, 372, 5064–5070. [Google Scholar] [CrossRef]
- Plotnitsky, A. Nature has no elementary particles and makes no measurements or predictions: Quantum measurement and quantum theory, from Bohr to Bell and from Bell to Bohr. Entropy 2021, 23, 1197. [Google Scholar] [CrossRef]
- Miroshnichenko, G.P. Microwave CQED quantum tomography. Eur. Phys. J. D 2016, 70, 271. [Google Scholar] [CrossRef]
- Koczor, B.; Zeier, R.; Glaser, S.J. Continuous phase-space representations for finite-dimensional quantum states and their tomography. Phys. Rev. A 2020, 101, 022318. [Google Scholar] [CrossRef]
- Toninelli, E.; Ndagano, B.; Valles, A.; Forbes, A. Concepts in quantum state tomography and classical implementation with intense light: Tutorial. Adv. Opt. Photonics 2019, 11, 67–134. [Google Scholar] [CrossRef]
- Almarashi, A.M.; Algarni, A.; Abdel-Khalek, S.; Abd-Elmougod, G.A.; Raqab, M.Z. Quantum Extropy and Statistical Properties of the Radiation Field for Photonic Binomial and Even Binomial Distributions. J. Russ. Laser Res. 2020, 41, 334–343. [Google Scholar] [CrossRef]
- Leon, R.C.C.; Yang, C.H.; Hwang, J.C.C.; Lemyre, J.C.; Tanttu, T.; Huang, W.; Huang, J.H.; Hudson, F.E.; Itoh, K.M.; Laucht, A.; et al. Bell-state tomography in a silicon many-electron artificial molecule. Nat. Commun. 2021, 12, 3228. [Google Scholar] [CrossRef]
- Paul, S.; Balakrishnan, V.; Ramanan, S.; Lakshmibala, S. Comparing probability distributions: Application to quantum states of light. J. Indian Inst. Sci. 2025, 105, 123–130. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I. Probability representation of quantum states. Entropy 2021, 23, 549. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Malkin, I.A.; Man’ko, V.I. Integrals of the motion, Green functions, and coherent states of dynamical systems. Int. J. Theor. Phys. 1975, 14, 37–54. [Google Scholar] [CrossRef]
- Dodonov, V.V. Universal integrals of motion and universal invariants of quantum systems. J. Phys. A Math. Gen 2000, 33, 7721–7738. [Google Scholar] [CrossRef]
- Dodonov, V.V. “Nonclassical” states in quantum optics: A “squeezed” review of the first 75 years. J. Opt. B Quantum Semiclass. Opt. 2002, 4, R1–R33. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Dodonov, A.V. Magnetic-moment probability distribution of a quantum charged particle in thermodynamic equilibrium. Phys. Rev. A 2020, 102, 042216. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G. Alternative commutation relations, star-products and tomography. J. Phys. A Math. Gen. 2002, 35, 699–719. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G. Tomographic map within the framework of star-product quantization. In Quantum Theory and Symmetries; Kapuschik, E., Horzela, A., Eds.; World Scientific: Singapore, 2001; pp. 126–133. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G.; Vitale, P. Star product, duality and double Lie algebras. Phys. Lett. A 2007, 360, 522–532. [Google Scholar] [CrossRef]
- Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeite. Berich. Verhand. Königl.-Sächs. Akad. Wissen. Leipzig Math.-Phys. Kl. 1917, 69, 262–277. Available online: http://ebsd.info/radon.htm (accessed on 5 November 2025).
- Radon, J. On the determination of functions from their integral values along certain manifolds. IEEE Transact. Med. Imag. 1986, 5, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Man’ko, V.I.; Mendes, R.V. Non-commutative time-frequency tomography. Phys. Lett. A 1999, 263, 53–61. [Google Scholar] [CrossRef]
- Feynman, R. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 1948, 20, 367–387. [Google Scholar] [CrossRef]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw–Hill, Inc.: New York, NY, USA, 1965; Available online: https://archive.org/details/quantummechanics0000feyn (accessed on 5 November 2025).
- Ghobakhloo, F.; Hassanabadi, H. Investigation of free particle propagator with generalized uncertainty problem. Adv. High Energy Phys. 2016, 2016, 2045313. [Google Scholar] [CrossRef]
- Mousavi, S.V.; Miret-Artés, S. Scaled quantum theory: The bouncing ball problem. Eur. Phys. J. Plus 2024, 139, 926. [Google Scholar] [CrossRef]
- Chen, B.K. Exact evolution of the propagator for the damped harmonic oscillator. J. Phys. Math. Gen. 1984, 17, 2475–2484. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man’ko, O.V. Feynman Path Integral and Landau Density Matrix in Probability Representation of Quantum States. Physics 2025, 7, 66. https://doi.org/10.3390/physics7040066
Man’ko OV. Feynman Path Integral and Landau Density Matrix in Probability Representation of Quantum States. Physics. 2025; 7(4):66. https://doi.org/10.3390/physics7040066
Chicago/Turabian StyleMan’ko, Olga V. 2025. "Feynman Path Integral and Landau Density Matrix in Probability Representation of Quantum States" Physics 7, no. 4: 66. https://doi.org/10.3390/physics7040066
APA StyleMan’ko, O. V. (2025). Feynman Path Integral and Landau Density Matrix in Probability Representation of Quantum States. Physics, 7(4), 66. https://doi.org/10.3390/physics7040066
