Mapping Cyclic Changes in Laguerre–Gaussian Astigmatic Beams Free from Orbital Angular Momentum onto the Poincaré Sphere and Geometric Phases
Abstract
1. Introduction
2. Theoretical Backgrounds and Computer Simulation
2.1. Fundamental Gaussian Beam
2.2. Stokes Parameters of the Intensity Ellipse
2.3. Structured Laguerre–Gaussian Beams with Zero Topological Charge
2.4. Geometric Berry Phase
3. Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, Y. Rays, waves, SU(2) symmetry and geometry: Toolkits for structured light. J. Opt. 2021, 23, 124004. [Google Scholar] [CrossRef]
- Dennis, M.R.; Alonso, M.A. Swings and roundabouts: Optical Poincaré spheres for polarization and Gaussian beams. Phil. Trans. R. Soc. A Math. Phys. Engin. Sci. 2017, 375, 20150441. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Porfirev, A.P. Vortex Laser Beams; CRC Press/Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2019; Available online: https://books.google.ch/books/about/Vortex_Laser_Beams.html?id=VkUPEAAAQBAJ (accessed on 27 October 2025).
- Wan, L.; Zhao, D. Controllable rotating Gaussian Schell-model beams. Opt. Lett. 2019, 44, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef]
- He, C.; Shen, Y.; Forbes, A. Towards higher-dimensional structured light. Light Sci. Appl. 2022, 11, 205. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.; Fan, S. Free-space topological optical textures: Tutorial. Adv. Opt. Photonics 2025, 17, 295–374. [Google Scholar] [CrossRef]
- Chen, Y.F.; Tung, J.C.; Tuan, P.H.; Huang, K.F. Symmetry breaking induced geometric surfaces with topological curves in quantum and classical dynamics of the SU(2) coupled oscillators. Ann. d. Phys. 2017, 529, 1600253. [Google Scholar] [CrossRef]
- Van Enk, S.J.; Nienhuis, G. Eigenfunction description of laser beams and orbital angular momentum of light. Opt. Commun. 1992, 94, 147–158. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, G.; Liu, Y.; Wang, H.; Hoenders, B.J.; Liang, C.; Cai1, Y.; Zeng, J. Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations. Opto-Electron. Sci. 2024, 3, 240001. [Google Scholar] [CrossRef]
- Van Enk, S.J. Geometric phase, transformations of Gaussian light beams and angular momentum transfer. Opt. Commun. 1993, 102, 59–64. [Google Scholar] [CrossRef]
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A Math. Phys. Engin. Sci. 1984, 392, 45–57. [Google Scholar]
- Courtial, J.; Dholakia, K.; Allen, L.; Padgett, M.J. Gaussian beams with very high orbital angular momentum. Opt. Commun. 1997, 144, 210–213. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Porfirev, A.P. Astigmatic laser beams with a large orbital angular momentum. Opt. Express 2018, 26, 141–156. [Google Scholar] [CrossRef]
- Padgett, M.J.; Courtial, J. Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt. Lett. 1999, 24, 430–432. [Google Scholar] [CrossRef]
- Agarwal, G.S. SU(2) structure of the Poincaré sphere for light beams with orbital angular momentum. J. Opt. Soc. Am. A 1999, 16, 2914–2916. [Google Scholar] [CrossRef]
- Galvez, E.J.; Crawford, P.R.; Sztul, H.I.; Pysher, M.J.; Haglin, P.J.; Williams, R.E. Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum. Phys. Rev. Lett. 2003, 90, 203901. [Google Scholar] [CrossRef] [PubMed]
- Calvo, G.F. Wigner representation and geometric transformations of optical orbital angular momentum spatial modes. Opt. Lett. 2005, 30, 1207–1209. [Google Scholar] [CrossRef]
- Alieva, T.; Bastiaans, M.J. Dynamic and geometric phase accumulation by Gaussian-type modes in first-order optical systems. Opt. Lett. 2008, 33, 1659–1661. [Google Scholar] [CrossRef]
- Volyar, A.; Bretsko, M. Mapping structured Laguerre–Gaussian beam states onto the orbital Poincaré sphere in the form of controllable spatial trajectories. J. Opt. Soc. Am. A 2024, 41, 1648–1655. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Z.; Fu, X.; Naidoo, D.; Forbes, A. SU(2) Poincaré sphere: A generalized representation for multidimensional structured light. Phys. Rev. A 2020, 102, 031501(R). [Google Scholar] [CrossRef]
- Volyar, A.; Bretsko, M.; Khalilov, S.; Akimova, Y. Self-healing and self-matching effects in astigmatic structured beams as a basis for measuring orbital Stokes parameters. Appl. Opt. 2025, 64, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-D.; Chew, K.-H.; Chen, R.-P. Effect of twisting phases on linear–circular polarization and spin–orbital angular momentum conversions in tightly focused vector and scalar beams. Photonics 2023, 10, 151. [Google Scholar] [CrossRef]
- Liu, B.; Huang, Y.; Liu, C.; Wu, S.-D.; Chew, K.-H.; Chen, R.-P. Influence of high-order twisting phases on polarization states and optical angular momentum of a vector light field. Photonics 2023, 10, 1099. [Google Scholar] [CrossRef]
- Cox, M.A.; Maqondo, L.; Kara, R.; Milione, G.; Cheng, L.; Forbes, A. The resilience of Hermite– and Laguerre–Gaussian modes in turbulence. J. Lightwave Technol. 2019, 37, 3911–3917. [Google Scholar] [CrossRef]
- Nemes, G.; Siegman, A.E. Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics. J. Opt. Soc. Am. A 1994, 11, 2257–2264. [Google Scholar] [CrossRef]
- Syubaev, S.; Mitsai, E.; Porfirev, A.; Khonina, S.; Kudryashov, S.; Katkus, T.; Juodkazis, S.; Gurevich, E.L.; Kuchmizhak, A. Silicon microprotrusions with tailored chirality enabled by direct femtosecond laser ablation. Opt. Lett. 2020, 45, 3050–3053. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhan, Z.; Vetlugin, A.N.; Ou, J.-Y.; Liu, Q.; Shen, Y.; Fu, X. Structured light analogy of quantum squeezed states. Light Sci. Appl. 2024, 13, 297. [Google Scholar] [CrossRef]
- Arnaud, J.A.; Kogelnik, H. Gaussian light beams with general astigmatism. Appl. Opt. 1969, 8, 1687–1693. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press/Elsevier Inc.: San Diego, CA, USA, 2007. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar] [CrossRef]
- Volyar, A.; Abramochkin, E.; Bretsko, M.; Akimova, Y. Engineering orbital angular momentum in structured beams in general astigmatic systems via symplectic matrix approach. Photonics 2024, 11, 191. [Google Scholar] [CrossRef]
- Phillips, R.L.; Andrews, L.C. Spot size and divergence for Laguerre–Gaussian beams of any order. Appl. Opt. 1983, 22, 643–644. [Google Scholar] [CrossRef]
- Ventzel, M.K. Spherical Trigonometry; Izdat. Geodez. Kartograf. Lit. [Pub. Geodet. Cartograph. Lit.]: Moscow, USSR, 1948; (In Russian). Available online: https://libarch.nmu.org.ua//handle/GenofondUA/79899 (accessed on 27 October 2025).
- Cohen, E.; Larocque, H.; Bouchard, F.; Nejadsattari, F.; Gefen, Y.; Karimi, E. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 2019, 1, 437–449. [Google Scholar] [CrossRef]
- Viña, A. Hamiltonian symplectomorphisms and the Berry phase. J. Geom. Phys. 2001, 40, 26–46. [Google Scholar] [CrossRef]
- Cisowski, C.; Götte, J.B.; Franke-Arnold, S. Geometric phases of light: Insights from fibre bundle theory. Rev. Mod. Phys. 2022, 94, 031001. [Google Scholar] [CrossRef]
- Zwanziger, J.W.; Koenig, M.; Pines, A. Berry’s phase. Annu. Rev. Phys. Chem. 1990, 41, 601–646. [Google Scholar] [CrossRef]
- ISO 11146-2. Lasers and Laser-Related Equipment—Test Methods for Laser Beam Widths, Divergence Angles and Beam Propagation Ratios—Part 2: General Astigmatic Beams; International Organization for Standardization: Geneva, Switzerland, 2005; Available online: https://cdn.standards.iteh.ai/samples/33626/bc0e48b8420b43e3b146febc6378e7a5/ISO-11146-2-2005.pdf (accessed on 27 October 2025).



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volyar, A.; Bretsko, M.; Akimova, Y. Mapping Cyclic Changes in Laguerre–Gaussian Astigmatic Beams Free from Orbital Angular Momentum onto the Poincaré Sphere and Geometric Phases. Physics 2025, 7, 65. https://doi.org/10.3390/physics7040065
Volyar A, Bretsko M, Akimova Y. Mapping Cyclic Changes in Laguerre–Gaussian Astigmatic Beams Free from Orbital Angular Momentum onto the Poincaré Sphere and Geometric Phases. Physics. 2025; 7(4):65. https://doi.org/10.3390/physics7040065
Chicago/Turabian StyleVolyar, Alexander, Mikhail Bretsko, and Yana Akimova. 2025. "Mapping Cyclic Changes in Laguerre–Gaussian Astigmatic Beams Free from Orbital Angular Momentum onto the Poincaré Sphere and Geometric Phases" Physics 7, no. 4: 65. https://doi.org/10.3390/physics7040065
APA StyleVolyar, A., Bretsko, M., & Akimova, Y. (2025). Mapping Cyclic Changes in Laguerre–Gaussian Astigmatic Beams Free from Orbital Angular Momentum onto the Poincaré Sphere and Geometric Phases. Physics, 7(4), 65. https://doi.org/10.3390/physics7040065
