Canonical Quantization of Metric Tensor for General Relativity in Pseudo-Riemannian Geometry
Abstract
1. Introduction
2. Discretized Finsler Structure
- non-degeneracy, i.e., the metric tensor is non-degenerate on ;
- smoothness, i.e., F is smooth on , on the complement of the zero section.
3. Anisotopic Conformal Transformation of Metric in Higher-Dimensional Geometry
4. Anisotopic Conformal Transformation of Inverse Metric in Higher-Dimensional Geometry
5. Quantized Metric Tensor in Pseudo-Riemannian Geometry
6. Quantized Inverse Tensor in Pseudo-Riemann Geometry
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Relativistic Generalized Uncertainty Principle (RGUP)
Appendix B. Function ϕ(p0) and the Curvature Properties of Randers Metric
Appendix C. Euler Theorem and Homogeneous Finsler– Hamilton Function
Appendix D. Remarks on Proposed Quantization
Appendix E. Einstein Field Equations
References
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Macias, A.; Camacho, A. On the incompatibility between quantum theory and general relativity. Phys. Lett. B 2008, 663, 99–102. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Alshehri, A. Relativistic generalized uncertainty principle for a test particle in four-dimensional spacetime. Mod. Phys. Lett. A 2024, 39, 2450079. [Google Scholar] [CrossRef]
- Todorinov, V. Relativistic Generalized Uncertainty Principle and Its Implications. Ph.D. Thesis, University of Lethbridge, Lethbridge, AB, Canada, 2020. [Google Scholar] [CrossRef]
- Tkachuk, V.M. Galilean and Lorentz transformations in a space with generalized uncertainty principle. Found. Phys. 2016, 46, 1666–1679. [Google Scholar] [CrossRef]
- Diosi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 1987, 120, 377–381. [Google Scholar] [CrossRef]
- Penrose, R. On gravity’s role in quantum state reduction. Gen. Relat. Grav. 1996, 28, 581–600. [Google Scholar] [CrossRef]
- Berglund, P.; Hübsch, T.; Mattingly, D.; Minic, D. Gravitizing the quantum. Int. J. Mod. Phys. D 2022, 31, 2242024. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Alshehri, A.A.; Pasqua, A. Expansion evolution of nonhomogeneous metric with quantum-mechanically revisited fundamental metric tensor. Nucl. Phys. B 2025, 1015, 116893. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Dabash, T.F.; Amer, T.S.; Shaker, M.O. Einstein–Gilbert–Straus solution of Einstein field equations: Timelike geodesic congruence with conventional and quantized fundamental metric tensor. Nucl. Phys. B 2025, 1014, 116866. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Farouk, F.T.; Tarabia, F.S.; Maher, M. Quantum-induced revisiting space–time curvature in relativistic regime. Int. J. Mod. Phys. A 2024, 39, 2443016. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Pasqua, A.; Waqas, M.; Alshehri, A.A.; Haldar, P.K. Quantum geometric perspective on the origin of quantum-conditioned curvatures. Class. Quant. Grav. 2024, 41, 195018. [Google Scholar] [CrossRef]
- Tawfik, A.; Dabash, T.F. Timelike geodesic congruence in the simplest solutions of general relativity with quantum-improved metric tensor. Int. J. Mod. Phys. D 2023, 32, 2350097. [Google Scholar] [CrossRef]
- Farouk, F.T.; Tawfik, A.N.; Tarabia, F.S.; Maher, M. On possible minimal length deformation of metric tensor, Levi-Civita connection, and the Riemann curvature tensor. Physics 2023, 5, 983–1002. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Dabash, T.F. Born reciprocity and discretized Finsler structure: An approach to quantize GR curvature tensors on three-sphere. Int. J. Mod. Phys. D 2023, 32, 2350068. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Dabash, T.F. Born reciprocity and relativistic generalized uncertainty principle in Finsler structure: Fundamental tensor in discretized curved spacetime. Int. J. Mod. Phys. D 2023, 32, 2350060. [Google Scholar] [CrossRef]
- Mo, X. An Introduction to Finsler Geometry; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2006. [Google Scholar] [CrossRef]
- Sasaki, S. On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 1958, 10, 338–354. [Google Scholar] [CrossRef]
- Dombrowski, P. On the geometry of the tangent bundle. J. Reine Angew. Math. 1962, 210, 73–88. [Google Scholar] [CrossRef]
- Gudmundsson, S.; Kappos, E. On the geometry of tangent bundles. Expo. Math. 2002, 20, 1–41. [Google Scholar] [CrossRef]
- Caianiello, E.R. Is there a maximal acceleration? Lett. Nuovo Cim. 1981, 32, 65–70. [Google Scholar] [CrossRef]
- Caianiello, E.R.; Feoli, A.; Gasperini, M.; Scarpetta, G. Quantum corrections to the space–time metric from geometric phase space quantization. Int. J. Theor. Phys. 1990, 29, 131–139. [Google Scholar] [CrossRef]
- Yampolski, A. The curvature of the Sasaki metric of tangent sphere bundles. J. Math. Sci. 1990, 48, 108–117. [Google Scholar] [CrossRef]
- Kowalski, O. Curvature of the induced Riemannian metric on the tangent bundle of a riemannian manifold. J. Reine Angew. Math. 1971, 250, 124–129. [Google Scholar] [CrossRef]
- Musso, E.; Tricerri, F. Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl. 1988, 150, 1–19. [Google Scholar] [CrossRef]
- Raei, Z. Some properties of Sasaki metric on the tangent bundle of Finsler manifolds. J. Finsler Geom. Appl. 2021, 2, 23–42. [Google Scholar] [CrossRef]
- Aso, K. Notes on some properties of the sectional curvature of the tangent bundle. Yokohama Math. J. 1981, 29, 1–5. Available online: https://ynu.repo.nii.ac.jp/search?page=1&size=20&sort=-custom_sort&search_type=2&q=647 (accessed on 2 September 2025).
- Abbassi, M.; Sarih, M. On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds. Differ. Geom. Appl. 2005, 22, 19–47. [Google Scholar] [CrossRef]
- Wu, B.Y. Some results on the geometry of tangent bundle of Finsler manifolds. Publ. Math. Debrecen 2007, 71, 185–193. [Google Scholar] [CrossRef]
- Asanov, G. Finsleroid-Finsler spaces of positive-definite and relativistic types. Rep. Math. Phys. 2006, 58, 275–300. [Google Scholar] [CrossRef]
- Mignani, R.; Scipioni, R. On the solutions of the Cartan equation in metric affine gravity. Gen. Relat. Grav. 2001, 33, 683–711. [Google Scholar] [CrossRef]
- Miron, R.; Hrimiuc, D.; Shimada, H.; Sabau, S. The Geometry of Hamilton and Lagrange Spaces; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Albuquerque, S.; Bezerra, V.B.; Lobo, I.P.; Macedo, G.; Morais, P.H.; Santos, L.C.N.; Varo, G. Quantum configuration and phase spaces: Finsler and Hamilton geometries. Physics 2023, 5, 90–115. [Google Scholar] [CrossRef]
- Miron, R.; Anastasiei, M. The Geometry of Lagrange Spaces: Theory and Applications; Springer: Dordrecht, The Netherlands, 1993. [Google Scholar] [CrossRef]
- Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 1927, 43, 172–198. [Google Scholar] [CrossRef]
- Heisenberg, W. The Actual Content of Quantum Theoretical Kinematics and Mechanics. NASA Technical Memorandum Report NASA-TM-77379; NASA: Washington, DC, USA, 1983. Available online: https://ntrs.nasa.gov/citations/19840008978 (accessed on 2 September 2025).
- Tawfik, A.N.; Diab, A.M. A review on the generalized uncertainty principle. Rep. Prog. Phys. 2015, 78, 126001. [Google Scholar] [CrossRef]
- Tawfik, A.; Diab, A. Generalized uncertainty principle: Approaches and applications. Int. J. Mod. Phys. 2014, 23, 1430025. [Google Scholar] [CrossRef]
- Galapon, E.A. Self-adjoint time operator is the rule for discrete semi-bounded Hamiltonians. Proc. R. Soc. Lond. A Math. Phys. Engin. Sci. 2002, 458, 2671–2689. [Google Scholar] [CrossRef]
- Farrales, R.A.E.; Galapon, E.A. Characteristic time operators as quantum clocks. Phys. Lett. A 2025, 532, 130192. [Google Scholar] [CrossRef]
- Pauli, W. General Principles of Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar] [CrossRef]
- Srinivas, M.D.; Vijayalakshmi, R. The ‘time of occurrence’ in quantum mechanics. Pramana 1981, 16, 173–199. [Google Scholar] [CrossRef]
- Busch, P.; Grabowski, M.; Lahti, P.J. Operational Quantum Physics; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Kraus, K. Remark on the uncertainty between angle and angular momentum. Z. Phys. 1965, 188, 374–377. [Google Scholar] [CrossRef]
- Galapon, E.A. What could we have been missing while Pauli’s theorem was in force? In Time and Matter; Bigi, I.I., Faessler, M., Eds.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2006; pp. 133–144. [Google Scholar] [CrossRef]
- Hiroshima, F.; Teranishi, N. Unbounded self-adjoint time operator for discrete semibounded Hamiltonians. arXiv 2024, arXiv:2405.02851. [Google Scholar] [CrossRef]
- Kokoulin, R. Self-adjoint time operator in a weighted energy space. arXiv 2025, arXiv:2504.17830. [Google Scholar] [CrossRef]
- Schmüdgen, K. On the Heisenberg commutation relation I. J. Funct. Anal. 1983, 50, 8–49. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Magdy, H.; Ali, A.F. Lorentz invariance violation and generalized uncertainty principle. Phys. Part. Nucl. Lett. 2016, 13, 59–68. [Google Scholar] [CrossRef]
- Samar, M.I.; Tkachuk, V.M. Perturbation hydrogen-atom spectrum in a space with the Lorentz-covariant deformed algebra with minimal length. J. Phys. Stud. 2010, 14, 1001. [Google Scholar] [CrossRef]
- Quesne, C.; Tkachuk, V.M. Lorentz-covariant deformed algebra with minimal length. Czech. J. Phys. 2006, 56, 1269–1274. [Google Scholar] [CrossRef]
- Hussar, P.E.; Kim, Y.S.; Noz, M.E. Time energy uncertainty relation and Lorentz covariance. Am. J. Phys. 1985, 53, 142–147. [Google Scholar] [CrossRef]
- Camacho, A. Generalized uncertainty principle and deformed dispersion relation induced by nonconformal metric fluctuations. Gen. Rel. Grav. 2002, 34, 1839–1845. [Google Scholar] [CrossRef]
- Petruzziello, L.; Wagner, F. Gravitationally induced uncertainty relations in curved backgrounds. Phys. Rev. D 2021, 103, 104061. [Google Scholar] [CrossRef]
- Filho, R.N.C.; Braga, R.P.M.; Lira, J.H.S.; Andrade, J.S. Extended uncertainty from first principles. Phys. Lett. B 2016, 755, 367–370. [Google Scholar] [CrossRef]
- Diab, A.M.; Tawfik, A.N. A Possible Solution of the Cosmological Constant problem based on GW170817 and Planck Observations with minimal length uncertainty. Adv. High Energy Phys. 2022, 2022, 9351511. [Google Scholar] [CrossRef]
- Tawfik, A.N. On quantum-induced revisiting Einstein tensor in the relativistic regime. Astron. Notes/Astron. Nachr. 2023, 344, e220071. [Google Scholar] [CrossRef]
- Munteanu, G. Complex Spaces in Finsler, Lagrange and Hamilton Geometries; Springer Science+Business Media: Dordrecht, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Elgendi, S.G. On the classification of Landsberg spherically symmetric finsler metrics. Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2150232. [Google Scholar] [CrossRef]
- Elgendi, S. Solutions for the Landsberg unicorn problem in Finsler geometry. J. Geom. Phys. 2021, 159, 103918. [Google Scholar] [CrossRef]
- Youssef, N.L.; Elgendi, S.G.; Kotb, A.A.; Taha, E.H. Anisotropic conformal change of conic pseudo-Finsler surfaces, I. Class. Quant. Grav. 2024, 41, 17505. [Google Scholar] [CrossRef]
- Bao, D.; Chern, S.-S.; Shen, Z. An Introduction to Riemann–Finsler Geometry; Springer Science+Business Media: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Cheng, X.; Shin, Z. Finster Geometry: An Approach via Randers Spaces; Science Press Ltd.: Beijing, China; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Padmanabhan, T. Duality and zero point length of space–time. Phys. Rev. Lett. 1997, 78, 1854–1857. [Google Scholar] [CrossRef]
- Mondal, V. Duality principle of the zero-point length of spacetime and Generalized Uncertainty Principle. EPL (Europhys. Lett.) 2020, 132, 10005. [Google Scholar] [CrossRef]
- Caianiello, E.R. Some remarks on quantum mechanics and relativity. Lett. Nuovo Cim. 1980, 27, 89–96. [Google Scholar] [CrossRef]
- Caianiello, E.R.; Marmo, G.; Scarpetta, G. (Pre)quantum geometry. Nuovo Cim. A 1985, 86, 337–355. [Google Scholar] [CrossRef]
- Brandt, H.E. Finslerian fields in the spacetime tangent bundle. Chaos Solitons Fractals 1999, 10, 267–282. [Google Scholar] [CrossRef]
- Witten, E. 2+1 dimensional gravity as an exactly soluble system. Nucl. Phys. B 1988, 311, 46–78. [Google Scholar] [CrossRef]
- Groenewold, H.J. On the Principles of elementary quantum mechanics. Physica 1946, 12, 405–460. [Google Scholar] [CrossRef]
- Woodhouse, N.M.J. Geometric Quantization; Clarendon Press: New York, NY, USA; Oxford University Press: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Kirillov, A.A. Elements of the Theory of Representations; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar] [CrossRef]
- Brandt, H.E. Riemann curvature scalar of space–time tangent bundle. Found. Phys. Lett. 1992, 5, 43–55. [Google Scholar] [CrossRef]
- Xun, Y.C. Generalized Uncertainty Principle and Its Applications. Ph.D. Thesis, National University of Singapore, Singapore, 2014. [Google Scholar]
- Snyder, H.S. Quantized space–time. Phys. Rev. 1947, 71, 38–41. [Google Scholar] [CrossRef]
- Liang, S.-D. Dirac theory in noncommutative phase spaces. Physics 2024, 6, 945–963. [Google Scholar] [CrossRef]
- Benczik, S.; Chang, L.N.; Minic, D.; Okamura, N.; Rayyan, S.; Takeuchi, T. Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation. Phys. Rev. D 2002, 66, 026003. [Google Scholar] [CrossRef]
- Robertson, H.P. The uncertainty principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
- Schrödinger, E. Zum Heisenbergschen Unschaerfeprinzip. Sitzungsber. Preuß. Akad. Wiss. Phys.-Math. Kl. 1930, 1930, 296–303. Available online: https://books.google.ch/books?id=QP3jAAAAMAAJ&pg=PA296 (accessed on 2 September 2025).
- Randers, G. On an asymmetric metric in the four-space of general relativity. Phys. Rev. 1941, 59, 195–199. [Google Scholar] [CrossRef]
- Martinetti, P. Line element in quantum gravity: The Examples of DSR and noncommutative geometry. Int. J. Mod. Phys. A 2009, 24, 2792–2801. [Google Scholar] [CrossRef]
- Dubois-Violette, M. Lectures on graded differential algebras and noncommutative geometry. Math. Phys. Stud. 2001, 23, 245–306. [Google Scholar] [CrossRef]
- Madore, J. An Introduction to Noncommutative Differential Geometry and Its Physical Applications; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar] [CrossRef]
- Ulhoa, S.C.; Santos, A.F.; Amorim, R.G.G. On Non-commutative correction of the Gödel-type metric. Gen. Relativ. Gravit. 2015, 47, 99. [Google Scholar] [CrossRef]
- FitzGerald, P.L. The Superfield quantisation of a superparticle action with an extended line element. Int. J. Mod. Phys. A 2005, 20, 2639–2655. [Google Scholar] [CrossRef]
- Pfeifer, C.; Relancio, J.J. Deformed relativistic kinematics on curved spacetime: A geometric approach. Eur. Phys. J. C 2022, 82, 150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawfik, A.N.; Elgendi, S.G.; Shenawy, S.; Hanafy, M. Canonical Quantization of Metric Tensor for General Relativity in Pseudo-Riemannian Geometry. Physics 2025, 7, 52. https://doi.org/10.3390/physics7040052
Tawfik AN, Elgendi SG, Shenawy S, Hanafy M. Canonical Quantization of Metric Tensor for General Relativity in Pseudo-Riemannian Geometry. Physics. 2025; 7(4):52. https://doi.org/10.3390/physics7040052
Chicago/Turabian StyleTawfik, Abdel Nasser, Salah G. Elgendi, Sameh Shenawy, and Mahmoud Hanafy. 2025. "Canonical Quantization of Metric Tensor for General Relativity in Pseudo-Riemannian Geometry" Physics 7, no. 4: 52. https://doi.org/10.3390/physics7040052
APA StyleTawfik, A. N., Elgendi, S. G., Shenawy, S., & Hanafy, M. (2025). Canonical Quantization of Metric Tensor for General Relativity in Pseudo-Riemannian Geometry. Physics, 7(4), 52. https://doi.org/10.3390/physics7040052