Generation of Zonal Flows in a Rotating Self-Gravitating Fluid
Abstract
1. Introduction
2. Model Equations
3. Nonlinear Dispersion Relation and Instability of Zonal Flows
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pedlosky, J. Geophysical Fluid Dynamics; Springer: New York, NY, USA, 1987. [Google Scholar] [CrossRef]
- Busse, F.H. A model of mean zonal flows in the major planets. Geophys. Astrophys. Fluid Dyn. 1983, 23, 153–174. [Google Scholar] [CrossRef]
- Flierl, G.R. Isolated eddy models in geophysics. Ann. Rev. Fluid Mech. 1987, 19, 493–530. [Google Scholar] [CrossRef]
- Petviashvili, V.I.; Pokhotelov, O.A. Solitary Waves in Plasmas and in the Atmosphere; Routledge/Taylor & Francis Group: London, UK, 1992. [Google Scholar] [CrossRef]
- Nezlin, M.V.; Snezhkin, E.N. Rossby Vortices, Spiral Strutures, Solitons; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar] [CrossRef]
- Smolyakov, A.I.; Diamond, P.H.; Malkov, M. Coherent structure phenomena in drift wave-zonal flow turbulence. Phys. Rev. Lett. 2000, 84, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lin, Z.; White, R. Excitation of zonal flow by drift waves in toroidal plasmas. Phys. Plasmas 2000, 7, 3129–3132. [Google Scholar] [CrossRef]
- Diamond, P.H.; Itoh, S.-I.; Itoh, K.; Hahm, T.S. Zonal flows in plasma—A review. Plasma Phys. Control. Fusion 2005, 47, R35–R161. [Google Scholar] [CrossRef]
- Charney, J.G. On the scale of atmosperic motions. Geophys. Publikas. 1948, 17, 3–20, Reprinted in The Atmosphere—A Challenge. The Science of Jule Gregory Charney; Lindzen, R.S., Lorenz, E.N., Platzman, G.W., Eds.; American Meteorological Society: Boston, MA, USA, 1990; pp. 251–265. [Google Scholar] [CrossRef]
- Hasegawa, A.; Mima, K. Pseudo-three dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 1978, 21, 87–92. [Google Scholar] [CrossRef]
- Gill, A.E. Atmosphere-Ocean Dynamics; Academic Press/Elsevier: San Diego, CA, USA, 1982; Available online: https://www.sciencedirect.com/bookseries/international-geophysics/vol/30/suppl/C (accessed on 22 August 2025).
- Shukla, P.K.; Stenflo, L. Generation of zonal flows by Rossby waves. Phys. Lett. A 2003, 307, 154–157. [Google Scholar] [CrossRef]
- Onishchenko, O.G.; Pokhotelov, O.A.; Sagdeev, R.Z.; Shukla, P.K.; Stenflo, L. Generation of zonal flows by Rossby waves in the atmosphere. Nonlin. Process. Geophys. 2004, 11, 241–244. [Google Scholar] [CrossRef]
- Kaladze, T.D.; Wu, D.J.; Pokhotelov, O.A.; Sagdeev, R.Z.; Stenflo, L.; Shukla, P.K. Rossby-wave driven zonal flows in the ionospheric E-layer. J. Plasma Phys. 2007, 73, 131–140. [Google Scholar] [CrossRef]
- Kaladze, T.D.; Shah, H.A.; Murtaza, G.; Tsamalashvili, L.V.; Shad, M.; Jandieri, J.V. Influence of non-monochromaticity on zonal-flow generation by magnetized Rossby waves in the ionospheric E-layer. J. Plasma Phys. 2009, 75, 345–357. [Google Scholar] [CrossRef]
- Jeans, J.H. Astronomy and Cosmogony; Cambridge University Press: New York, NY, USA, 1929. [Google Scholar] [CrossRef]
- Dolotin, V.V.; Fridman, A.M. Generation of an observable turbulence spectrum and solitary dipole vortices in rotating gravitating systems. Sov. Phys. JETP 1991, 72, 1–10. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/72/1/p1?a=list (accessed on 22 August 2025).
- Jovanović, D.; Vranješ, J. Vortex solitons in self-gravitating plasma. Phys. Scr. 1990, 42, 463–468. [Google Scholar] [CrossRef]
- Shukla, P.K. Global vortices in nonuniform gravitating systems. Phys. Lett. A 1993, 176, 54–56. [Google Scholar] [CrossRef]
- Shukla, P.K.; Stenflo, L. Nonlinear vortex chains in a nonuniform gravitating fluid. Astron. Astrophys. 1995, 300, 433–434. [Google Scholar]
- Pokhotelov, O.A.; Khruschev, V.V.; Shukla, P.K.; Stenflo, L.; McKenzie, J.F. Nonlinearly coupled Rossby-type and inertio-gravity waves in self-gravitating systems. Phys. Scr. 1998, 58, 618–621. [Google Scholar] [CrossRef]
- Tsintsadze, N.L.; Mendonca, J.T.; Shukla, P.K.; Stenflo, L.; Mahmoodi, J. Regular structures in self-gravitating dusty plasmas. Phys. Scr. 2000, 62, 70–74. [Google Scholar] [CrossRef]
- Abrahamyan, M.G. Anticyclonic vortex in a protoplanetary disk. Astrophysics 2016, 59, 265–271. [Google Scholar] [CrossRef]
- Lashkin, V.M.; Cheremnykh, O.K.; Ehsan, Z.; Batool, N. Three-dimensional vortex dipole solitons in self-gravitating systems. Phys. Rev. E 2023, 107, 024201. [Google Scholar] [CrossRef]
- Lashkin, V.M.; Cheremnykh, O.K. Fourth-order modon in a rotating self-gravitating fluid. Phys. Fluids 2024, 36, 026122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lashkin, V.M.; Cheremnykh, O.K. Generation of Zonal Flows in a Rotating Self-Gravitating Fluid. Physics 2025, 7, 40. https://doi.org/10.3390/physics7030040
Lashkin VM, Cheremnykh OK. Generation of Zonal Flows in a Rotating Self-Gravitating Fluid. Physics. 2025; 7(3):40. https://doi.org/10.3390/physics7030040
Chicago/Turabian StyleLashkin, Volodymyr M., and Oleg K. Cheremnykh. 2025. "Generation of Zonal Flows in a Rotating Self-Gravitating Fluid" Physics 7, no. 3: 40. https://doi.org/10.3390/physics7030040
APA StyleLashkin, V. M., & Cheremnykh, O. K. (2025). Generation of Zonal Flows in a Rotating Self-Gravitating Fluid. Physics, 7(3), 40. https://doi.org/10.3390/physics7030040