Phase Transition in Ant Colony Optimization
Abstract
:1. Introduction
2. Method and Definitions
Stochastic Differential Equations
3. Results
3.1. Initial Distribution of
3.2. Case with
3.3. Case with
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Initial Conditions of Z(t) and Z(m,t)
References
- Galam, S. Sociophysics: A review of Galam models. Int. J. Mod. Phys. 2008, 19, 409–440. [Google Scholar] [CrossRef]
- Galam, S. Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena; Springer Science+Business Media, LLC: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Galam, S. Majority rule, hierarchical structures, and democratic totalitarianism: A statistical approach. J. Math. Psychol. 1986, 30, 426–434. [Google Scholar] [CrossRef]
- Brian Arthur, W. Competing technologies, increasing returns, and lock-In by historical events. Econ. J. 1989, 99, 116–131. [Google Scholar] [CrossRef]
- Bikhchandani, S.; Hirshleifer, D.; Welch, I. A Theory of fads, fashion, custom, and cultural change as informational cascades. J. Political Econ. 1992, 100, 992–1026. Available online: https://www.jstor.org/stable/2138632 (accessed on 26 December 2023).
- Mori, S.; Hisakado, M.; Takahashi, T. Phase transition to a two-peak phase in an information-cascade voting experiment. Phys. Rev. E 2012, 86, 026109. [Google Scholar] [CrossRef]
- Galam, S.; Cheon, T. Asymmetric contrarians in opinion dynamics. Entropy 2020, 22, 25. [Google Scholar] [CrossRef]
- Kirman, A. Ants, rationality, and recruitment. Quart. J. Econ. 1993, 108, 137–156. [Google Scholar] [CrossRef]
- Hisakado, M.; Mori, S. Information cascade, Kirman’s ant colony model, and kinetic Ising model. Physica A 2015, 417, 63–75. [Google Scholar] [CrossRef]
- Deneubourg, J.L.; Aron, S.; Goss, S.; Pasteels, J.M. Error, communication and learning in ant societies. Eur. J. Oper. Res. 1987, 30, 168–172. [Google Scholar] [CrossRef]
- Pasteels, J.; Deneubourg, J.L.; Goss, S. Transmission and amplification of information in a changing environment: The case of insect societies. In Law of Nature and Human Conduct; Prigogine, I., Sanglier, M., Eds.; GORDES: Bruxelles, Belgium, 1987; pp. 129–156. [Google Scholar]
- Pasteels, J.; Deneubourg, J.; Detrain, C. (Eds.) Information Processing in Social Insects; Birkhäuser Verlag/Springer Basel AG: Basel, Switzerland, 2012. [Google Scholar] [CrossRef]
- Camazine, S.; Deneubourg, J.-L.; Franks, N.L.; Sneyd, J.; Theraula, G.; Bonabeau, E. Self-Organization in Biological Systems; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Dorigo, M. Optimization, Learning and Natural Algorithms. Ph.D. Thesis, Poltecnico di Milan, Milan, Italy, 1992. [Google Scholar]
- Dorigo, M.; Gambardella, L.M. Ant colonies for the travelling salesman problem. Biosystems 1997, 43, 73–81. [Google Scholar] [CrossRef]
- Cordón, O.; Herrera, F.; Stützle, T. A review on the ant colony optimization metaheuristic: Basis, models and new trends. Mathware Soft Comput. 2002, 9, 141–175. Available online: https://eudml.org/doc/39241 (accessed on 26 December 2023).
- Meuleau, N.; Dorigo, M. Ant colony optimization and stochastic gradient descent. Artif. Life 2002, 8, 103–121. [Google Scholar] [CrossRef]
- Dorigo, M.; Zlochin, M.; Meuleau, N.; Birattari, M. Updating ACO pheromones using stochastic gradient ascent and cross-entropy methods. In Applications of Evolutionary Computing. EvoWorkshops 2002: EvoCOP, EvoIASP, EvoSTIM/EvoPLAN. Kinsale, Ireland, April 3–4, 2002. Proceedings; Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 21–30. [Google Scholar] [CrossRef]
- Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Shmoys, D.B. (Eds.) The Travelling Salesman Problem. A Guided Tour of Combinatorial Optimization; John Wiley & Sons, Ltd.: Chichester, UK, 1987; Available online: https://archive.org/details/travelingsalesma00lawl/ (accessed on 26 December 2003).
- Dorigo, M.; Stützle, T. Ant colony optimization: Overview and recent advances. In Handbook of Metaheuristics; Gendreau, M., Potvin, J.Y., Eds.; Springer Science+Business Media, LLC: New York, NY, USA, 2010; pp. 227–263. [Google Scholar] [CrossRef]
- Tang, K.; Wei, X.F.; Jiang, Y.H.; Chen, Z.W.; Yang, L. An adaptive Aat colony optimization for solving large-scale traveling salesman problem. Mathematics 2023, 11, 4439. [Google Scholar] [CrossRef]
- Li, W.; Xia, L.; Huang, Y.; Mahmoodi, S. An ant colony optimization algorithm with adaptive greedy strategy to optimize path problems. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 1557–1571. [Google Scholar] [CrossRef]
- Gad, A.G. Particle swarm optimization algorithm and its applications: A systematic review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- Meyer, B. On the convergence behaviour of ant colony search. Complex. Intl. 2008, 12, 1–15. [Google Scholar]
- Gutjahr, W.J. ACO algorithms with guaranteed convergence to the optimal solution. Inf. Process. Lett. 2002, 82, 145–153. [Google Scholar] [CrossRef]
- Nakamichi, Y.; Arita, T. Diversity control in ant colony optimization. Artif. Life Robot. 2004, 7, 198–204. [Google Scholar] [CrossRef]
- Randall, M.; Tonkes, E. Intensification and diversification strategies in ant colony system. Complex. Intl. 2002, 9, 1–7. Available online: https://www.researchgate.net/publication/246494892 (accessed on 26 December 2023).
- Meyer, B. A Tale of two wells: Noise-induced adaptiveness in self-organized systems. Proceedings of The Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2008), Venice, Italy, 20–24 October 2008; Brueckner, S., Robertson, P., Bellur, U., Eds.; IEEE Computer Society: Los Alamos, CA, USA, 2008; pp. 435–444. [Google Scholar] [CrossRef]
- Meyer, B. Optimal information transfer and stochastic resonance in collective decision making. Swarm Intell. 2017, 11, 131–154. [Google Scholar] [CrossRef]
- Meyer, B.; Ansorge, C.; Nakagaki, T. The role of noise in self-organized decision making by the true slime mold Physarum polycephalum. PLoS ONE 2017, 12, e0172933. [Google Scholar] [CrossRef]
- Hisakado, M.; Hattori, K.; Mori, S. From the multiterm urn model to the self-exciting negative binomial distribution and Hawkes processes. Phys. Rev. E 2022, 106, 034106. [Google Scholar] [CrossRef] [PubMed]
- Hisakado, M.; Hino, M. Between ant colony optimization and genetic algorithm. Intl. Proceed. Soc. Jpn. Transact. Math. Model. Appl. (IPSJ TOM) 2016, 9, 8–14. [Google Scholar]
- Mori, S.; Hisakado, M. Correlation function for generalized Pólya urns: Finite-size scaling analysis. Phys. Rev. E 2015, 92, 052112. [Google Scholar] [CrossRef]
- Nakayama, K.; Mori, S. Universal function of the nonequilibrium phase transition of a nonlinear Pólya urn. Phys. Rev. E 2021, 104, 014109. [Google Scholar] [CrossRef] [PubMed]
- Hill, B.M.; Lane, D.; Sudderth, W. A Strong law for some generalized urn processes. Ann. Probab. 1980, 8, 214–226. [Google Scholar] [CrossRef]
- Pemantle, R. When are touchpoints limits for generalized polya urns? Proc. Am. Math. Soc. 1991, 113, 235. [Google Scholar] [CrossRef]
- Gardiner, C. Stochastic Methods: A Handbook for the Natural and Social Science; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, S.; Nakamura, S.; Nakayama, K.; Hisakado, M. Phase Transition in Ant Colony Optimization. Physics 2024, 6, 123-137. https://doi.org/10.3390/physics6010009
Mori S, Nakamura S, Nakayama K, Hisakado M. Phase Transition in Ant Colony Optimization. Physics. 2024; 6(1):123-137. https://doi.org/10.3390/physics6010009
Chicago/Turabian StyleMori, Shintaro, Shogo Nakamura, Kazuaki Nakayama, and Masato Hisakado. 2024. "Phase Transition in Ant Colony Optimization" Physics 6, no. 1: 123-137. https://doi.org/10.3390/physics6010009
APA StyleMori, S., Nakamura, S., Nakayama, K., & Hisakado, M. (2024). Phase Transition in Ant Colony Optimization. Physics, 6(1), 123-137. https://doi.org/10.3390/physics6010009