Analytical Calculations of the Quantum Tsallis Thermodynamic Variables
Abstract
:1. Introduction
2. Review: Tsallis Thermodynamics: ,
2.1. Classical Case
2.2. Quantum Case
2.2.1. Bosons
2.2.2. Fermions
3. Review and New Results: Tsallis Thermodynamics: ,
3.1. Classical Case (Review)
3.1.1. Upper Region:
3.1.2. Lower Region:
3.2. Quantum Case: Bosons (New Results)
3.2.1. Upper Region:
3.2.2. Lower Region:
4. Methodology: The Pressure of a Gas of Bosons Following the Tsallis Distribution
4.1. Rescaling the Integration Variable
4.2. Infinite Summation
4.3. Contour Integral Representation
4.4. Wrapping Contour Clockwise:
4.5. Analytic Continuation:
5. Numerical Results and Discussion
6. Summary, Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abelev, B.I.; et al. [STAR Collaboration]. Strange particle production in p+p collisions at = 200 Gev. Phys. Rev. C 2007, 75, 064901. [Google Scholar] [CrossRef] [Green Version]
- Adare, A.; et al. [PHENIX Collaboration]. Identified charged hadron production in p+p collisions at = 200 Gev and 62.4 Gev. Phys. Rev. C 2011, 83, 064903. [Google Scholar] [CrossRef] [Green Version]
- Aamodt, K.; et al. [The ALICE Collaboration]. Production of pions, kaons and protons in pp collisions at = 900 GeV with ALICE at the LHC. Eur. Phys. J. C 2011, 71, 1655. [Google Scholar] [CrossRef] [Green Version]
- Khachatryan, V.; et al. [CMS Collaboration]. Strange particle production in pp collisions at = 0.9 and 7 TeV. J. High Energy Phys. 2011, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Cleymans, J.; Worku, D. The Tsallis distribution in proton-proton collisions at = 0.9 TeV at the LHC. J. Phys. G Nucl. Part. Phys. 2012, 39, 025006. [Google Scholar] [CrossRef]
- Cleymans, J.; Worku, D. Relativistic thermodynamics: Transverse momentum distributions in high-energy physics. Eur. Phys. J. A 2012, 48, 160. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Wilk, G.; Włodarczyk, Z. Interpretation of the Nonextensivity Parameter q in Some Applications of Tsallis Statistics and Lévy Distributions. Phys. Rev. Lett. 2000, 84, 2770. [Google Scholar] [CrossRef] [Green Version]
- Wilk, G.; Włodarczyk, Z. Multiplicity fluctuations due to the temperature fluctuations in high-energy nuclear collisions. Phys. Rev. C 2009, 79, 054903. [Google Scholar] [CrossRef] [Green Version]
- Osada, T.; Wilk, G. Nonextensive hydrodynamics for relativistic heavy-ion collisions. Phys. Rev. C 2009, 77, 044903. [Google Scholar] [CrossRef] [Green Version]
- Biro, T.S.; Molnar, E. Fluid dynamical equations and transport coefficients of relativistic gases with non-extensive statistics. Phys. Rev. C 2012, 85, 024905. [Google Scholar] [CrossRef] [Green Version]
- Birö, T.S.; Barnaföldi, G.G.; Van, P. Quark-gluon plasma connected to finite heat bath. Eur. Phys. J. A 2013, 49, 110. [Google Scholar] [CrossRef] [Green Version]
- Deppman, A. Thermodynamics with fractal structure, Tsallis statistics, and hadrons. Phys. Rev. D 2016, 93, 054001. [Google Scholar] [CrossRef] [Green Version]
- Parvan, A.S.; Bhattacharyya, T. Hadron transverse momentum distributions of the Tsallis normalized and unnormalized statistics. Eur. Phys. J. A 2020, 56, 72. [Google Scholar] [CrossRef]
- Cleymans, J.; Lykasov, G.I.; Parvan, A.S.; Sorin, A.S.; Teryaev, O.V.; Worku, D. Systematic properties of the Tsallis Distribution: Energy Dependence of Parameters in High-Energy p-p Collisions. Phys. Lett. B 2013, 723, 351. [Google Scholar] [CrossRef] [Green Version]
- Marques, L.; Cleymans, J.; Deppman, A. Description of high-energy pp collisions using Tsallis thermodynamics: Transverse momentum and rapidity distributions. Phys. Rev. D 2015, 91, 054025. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, S.; Tiwari, S.K.; Younus, M.; Sahoo, R. Elliptic flow in Pb+Pb collisions at = 2.76 TeV at the LHC using Boltzmann transport equation with non-extensive statistics. Eur. Phys. J. A 2018, 54, 38. [Google Scholar] [CrossRef]
- Acharya, S.; et al. [ALICE Collaboration]. Production of deuterons, tritons, 3He nuclei, and their antinuclei in pp collisions at = 0.9, 2.76, and 7 TeV. Phys. Rev. C 2018, 97, 024615. [Google Scholar] [CrossRef] [Green Version]
- Azmi, M.D.; Bhattacharyya, T.; Cleymans, J.; Paradza, M.W. Energy density at kinetic freeze-out in Pb-Pb collisions at the LHC using the Tsallis distribution. J. Phys. G 2020, 47, 045001. [Google Scholar] [CrossRef] [Green Version]
- Parvan, A.S. Equivalence of the phenomenological Tsallis distribution to the transverse momentum distribution of q-dual statistics. Eur. Phys. J. A 2020, 56, 106. [Google Scholar] [CrossRef]
- Lavagno, A. Relativistic nonextensive thermodynamics. Phys. Lett. A 2002, 301, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Gyulassy, M.; Matsui, T. Quark gluon plasma evolution in scaling hydrodynamics. Phys. Rev. D 1984, 29, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Akase, Y.; Mizutani, M.; Muroya, S.; Namiki, M.; Yasuda, M. Hydrodynamical evolution of QGP fluid with phase transition and particle distribution in high-energy nuclear collisions. Prog. Theor. Phys. 1991, 85, 305–320. [Google Scholar] [CrossRef]
- Csernai, L.P.; Anderlik, C.; Keranen, A.; Magas, V.K.; Manninen, J.; Strottman, D.D. QGP hydrodynamics for RHIC energies. Acta Phys. Hung. A 2003, 17, 271–280. [Google Scholar] [CrossRef]
- Song, H.; Heinz, U.W. Extracting the QGP viscosity from RHIC data—A Status report from viscous hydrodynamics. J. Phys. G 2009, 36, 064033. [Google Scholar] [CrossRef]
- Teaney, D.A. Viscous hydrodynamics and the quark gluon plasma. In Quark Gluon Plasma 4; Hwa, R.C., Wang, X.-N., Eds.; World Scientific: Singapore, 2010; pp. 207–266. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, A.K. Knudsen number, ideal hydrodynamic limit for elliptic flow and QGP viscosity in = 62 and 200 GeV Cu+Cu/Au+Au collisions. Phys. Rev. C 2010, 82, 047901. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, A.; Roy, V. Relativistic hydrodynamics in heavy-ion collisions: General aspects and recent developments. Adv. High Energy Phys. 2016, 2016, 9623034. [Google Scholar] [CrossRef] [Green Version]
- Fowler, G.N.; Raha, S.; Stelte, N.; Weiner, R.M. Solitons in nucleus-nucleus collisions near the speed of sound. Phys. Lett. B 1982, 115, 286–290. [Google Scholar] [CrossRef]
- Fogaça, D.A.; Filho, L.G.F.; Navarra, F.S. Nonlinear waves in a quark gluon plasma. Phys. Rev. C 2010, 81, 055211. [Google Scholar] [CrossRef]
- Fogaça, D.A.; Navarra, F.S.; Filho, L.G.F. Korteveg-de Vries solitons in a cold quark-gluon plasma. Phys. Rev. D 2010, 84, 054011. [Google Scholar] [CrossRef] [Green Version]
- Fogaça, D.A.; Navarra, F.S. Gluon condensates in a cold quark-gluon plasma. Phys. Lett. B 2011, 700, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Fogaça, D.A.; Navarra, F.S.; Filho, L.G.F. On the radial expansion of tubular structures in a quark-gluon plasma. Nucl. Phys. A 2012, 887, 22–41. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, T.; Mukherjee, A. Propagation of non-linear waves in hot, ideal, and non-extensive quark-gluon plasma. Eur. Phys. Jour. C 2020, 80, 656. [Google Scholar] [CrossRef]
- Sarwar, G.; Hasanujjaman, M.; Bhattacharyya, T.; Rahaman, M.; Bhattacharyya, A.; Alam, J.E. Nonlinear waves in a hot, viscous and non-extensive quark-gluon plasma. Eur. Phys. J. C 2022, 82, 189. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Cleymans, J.; Khuntia, A.; Pareek, P.; Sahoo, R. Radial flow in non-extensive thermodynamics and study of particle spectra at LHC in the limit of small (q – 1). Eur. Phys. J. A 2016, 52, 30. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Cleymans, J.; Mogliacci, S. Analytic results for the Tsallis thermodynamic variables. Phys. Rev. D 2018, 94, 094026. [Google Scholar] [CrossRef] [Green Version]
- Sanches, M.S., Jr.; Navarra, F.S.; Fogaça, D.A. The quark gluon plasma equation of state and the expansion of the early Universe. Nucl. Phys. A 2015, 937, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, A.B. Vibration spectra and specific heats of cubic metals. I. Theory and application to sodium. Phys. Rev. 1955, 97, 363. [Google Scholar] [CrossRef]
- Taylor, C.D.; Lookman, T.; Scott, L.R. Ab initio calculations of the uranium-hydrogen system: Thermodynamics, hydrogen saturation of a-U and phase-transformation to UH3. Acta Mater. 2010, 58, 1045. [Google Scholar] [CrossRef]
- Aguiar, J.C.; Mitnik, D.; DiRocco, H.O. Electron momentum density and Compton profile by a semi-empirical approach. J. Phys. Chem. Solids 2015, 83, 64–69. [Google Scholar] [CrossRef]
- Sharma, G.; Joshi, K.B.; Mishra, M.C.; Kothari, R.K.; Sharma, Y.C.; Vyas, Y.C.V.; Sharma, B.K. Electronic structure of AlAs: A Compton profile study. J. Alloys Compd. 2009, 485, 682–686. [Google Scholar] [CrossRef]
- Kawasuso, A.; Maekawa, M.; Fukaya, Y.; Yabuuchi, A.; Mochizuki, I. Polarized positron annihilation measurements of polycrystalline Fe, Co, Ni, and Gd based on Doppler broadening of annihilation radiation. Phys. Rev. B 2011, 83, 100406(R). [Google Scholar] [CrossRef]
- Tsallis, C.; Mendes, R.S.; Plastino, A.R. The role of constraints within generalized nonextensive statistics. Phys. A 1998, 261, 534–554. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Parvan, A.S. Analytical results for the classical and quantum Tsallis hadron transverse momentum spectra: The zeroth order approximation and beyond. Eur. Phys. J. A 2021, 57, 206. [Google Scholar] [CrossRef]
- Conroy, J.M.; Miller, H.G.; Plastino, A.R. Thermodynamic consistency of the q-deformed Fermi-Dirac distribution in nonextensive thermostatics. Phys. Lett. A 2010, 374, 4581–4584. [Google Scholar] [CrossRef] [Green Version]
- Büyükkiliç, F.; Demirhan, D. A fractal approach to entropy and distribution functions. Phys. Lett. A 1993, 181, 24–28. [Google Scholar] [CrossRef]
- A Repeated Digit Is Represented by a Bar. Available online: https://en.wikipedia.org/wiki/Repeating_decimal (accessed on 19 April 2022).
- Bhattacharyya, T.; Cleymans, J.; Mogliacci, S.; Parvan, A.S.; Sorin, A.S.; Teryaev, O.V. Non-extensivity of the QCD pT-spectra. Eur. Phys. J. A 2018, 54, 222. [Google Scholar] [CrossRef] [Green Version]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; Krieger: New York, NY, USA, 1981; Volume 1. [Google Scholar]
- Davydychev, A.I.; Tausk, J.B. Two-loop self-energy diagrams with different masses and the momentum expansion. Nucl. Phys. B 1993, 397, 123–142. [Google Scholar] [CrossRef]
- Boos, É.É.; Davydychev, A.I. A method of calculating massive Feynman integrals. Theor. Math. Phys. 1991, 89, 1052–1064. [Google Scholar] [CrossRef]
- Smirnov, V.A. Evaluating Feynman Integrals; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
- Wolfram MathWorld. Available online: https://mathworld.wolfram.com/LegendreDuplicationFormula.html (accessed on 19 April 2022).
- Weber, H.J.; Arfken, G.B. Essential Mathematical Methods for Physicists; Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- Patra, R.N.; Mohanty, B.; Nayak, T.K. Centrality, transverse momentum and collision energy dependence of the Tsallis parameters in relativistic heavy-ion collisions. Eur. Phys. J. Plus 2021, 136, 702. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, A.; Bhattacharyya, T. Analytical Calculations of the Quantum Tsallis Thermodynamic Variables. Physics 2022, 4, 800-811. https://doi.org/10.3390/physics4030051
Hussein A, Bhattacharyya T. Analytical Calculations of the Quantum Tsallis Thermodynamic Variables. Physics. 2022; 4(3):800-811. https://doi.org/10.3390/physics4030051
Chicago/Turabian StyleHussein, Ayman, and Trambak Bhattacharyya. 2022. "Analytical Calculations of the Quantum Tsallis Thermodynamic Variables" Physics 4, no. 3: 800-811. https://doi.org/10.3390/physics4030051
APA StyleHussein, A., & Bhattacharyya, T. (2022). Analytical Calculations of the Quantum Tsallis Thermodynamic Variables. Physics, 4(3), 800-811. https://doi.org/10.3390/physics4030051