Recent Achievements in NAA, PAA, XRF, IBA and AMS Applications for Cultural Heritage Investigations at Nuclear Physics Institute, Řež
Abstract
:1. Introduction
2. Experimental
2.1. Neutron Activation Analysis (NAA)
2.2. Photon Activation Analysis (PAA)
2.3. X-ray Fluorescence Analysis
2.4. Ion Beam Analysis (IBA)
2.5. Radiocarbon Dating Using Accelerator Mass Spectrometry
3. Case Studies
3.1. NAA of Sandstone from Khmer Temples, Cambodia
3.2. XRF and INAA of Historical Coins and Ancient Metallic Artefacts
3.3. Determination of Matrix of a Bronze Age Bracelet by PAA and Its Age by Radiocarbon Dating
3.4. Radiocarbon Dating of Charcoal Drawings in Kateřinská Cave of the Moravian Karst by AMS
3.5. Assay of Tycho Brahe’s Remains by INAA, RNAA and IBA—Was He Poisoned with Hg?
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Macková, A.; MacGregor, D.; Azaiez, F.; Nyberg, J.; Piasetzky, E. Nuclear Physics for Cultural Heritage, A Topical Review; Nuclear Physics Division of the European Physical Society: Mulhouse, France, 2016. [Google Scholar] [CrossRef]
- Macková, A.; Kučera, J.; Kameník, J.; Havránek, V.; Šmit, Ž.; Giuntini, L.; Kasztovszky, Z. Nuclear physics for cultural heritage. Nuovo Cim. C 2019, 42, 53. [Google Scholar] [CrossRef]
- Adriaens, M.; Dowsett, M. (Eds.) Spectroscopy, Diffraction and Tomography in Art and Heritage Science; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Jeynes, C.; Colaux, J.L. Thin film depth profiling by ion beam analysis. Analyst 2016, 141, 5944–5985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Research Reactor LVR-15. Available online: http://reaktory.cvrez.cz/en/research-reactor-lvr-15/ (accessed on 22 January 2021).
- Řanda, Z.; Frána, J.; Mizera, J.; Kučera, J.; Novák, J.K.; Ulrych, J.; Belov, A.G.; Maslov, O.D. Instrumental neutron and photon activation analysis in the geochemical study of phonolytic and trachytic rocks. Geostand. Geoanal. Res. 2007, 31, 275–283. [Google Scholar] [CrossRef]
- Kubešová, M.; Kučera, J. Validation of k0 standardization method in neutron activation analysis—The use of Kayzero for Windows programme at the Nuclear Physics Institute, Řež. Nucl. Instrum. Meth. Phys. Res. A 2010, 622, 403–406. [Google Scholar] [CrossRef]
- Kubešová, M.; Kučera, J.; Fikrle, M. A new monitor set for the determination of neutron flux parameters in short-time k0-NAA. Nucl. Instrum. Meth. Phys. Res. A 2011, 656, 61–64. [Google Scholar] [CrossRef]
- Kubešová, M.; Krausová, I.; Kučera, J. Verification of k0-NAA results at the LVR-15 reactor in Řež with the use of Au + Mo + Rb (+Zn) monitor set. J. Radioanal. Nucl. Chem. 2014, 300, 473–480. [Google Scholar] [CrossRef]
- Krist, P.; Horák, Z.; Mizera, J.; Chvátil, D.; Vognar, M.; Řanda, Z. Innovations at the MT 25 microtron aimed at applications in photon activation analysis. J. Radioanal. Nucl. Chem. 2015, 304, 183–188. [Google Scholar] [CrossRef]
- Krausová, I.; Tajer, J.; Světlík, I.; Chvátil, D. Matrix determination of Bronze Age bracelet via nitrogen assay by instrumental photon activation analysis and radiocarbon dating of its exact age. Nucl. Instrum. Methods Phys. Res. B 2019, 448, 26–30. [Google Scholar] [CrossRef]
- Jeynes, C.; Palitsina, V.V.; Kokkoris, C.; Hamilton, A.; Grime, G.W. On the accuracy of Total-IBA. Nucl. Instrum. Meth. Phys. Res. B 2020, 465, 85–100. [Google Scholar] [CrossRef]
- Macková, A.; Malinský, P.; Cutroneo, M.; Havránek, V.; Voseček, V.; Flaks, J.; Semián, V.; Vonka, L.; Zach, V.; Bém, P.; et al. Small accelerators and their applications in the CANAM research infrastructure at the NPI CAS. Eur. Phys. J. Plus 2021, 136, 558. [Google Scholar] [CrossRef]
- Maxwell, J.A.; Campbell, J.L.; Teesdale, W.J. The Guelph PIXE software package. Nucl. Instrum. Meth. Phys. Res. B 1989, 43, 218–230. [Google Scholar] [CrossRef]
- Campbell, J.L.; Cureatz, D.J.T.; Flannigan, E.L.; Heirwegh, C.; Maxwell, J.; Russell, J.; Taylor, S. The Guelph PIXE software package, V. Nucl. Instrum. Meth. Phys. Res. B 2021, 499, 77–88. [Google Scholar] [CrossRef]
- Grime, G.W. The ‘Q factor’ method: Quantitative microPIXE analysis using RBS normalisation. Nucl. Instrum. Meth. Phys. Res. B 1996, 109, 170–174. [Google Scholar] [CrossRef]
- Hajdas, I.; Ascough, P.; Garnett, M.H.; Fallon, S.J.; Pearson, C.L.; Quarta, G.; Spalding, K.L.; Yamaguchi, H.; Yoneda, M. Radiocarbon dating. Nat. Rev. Methods Primers 2021, 1, 62. [Google Scholar] [CrossRef]
- Kučera, J.; Maxeiner, S.; Müller, A.; Němec, M.; John, J.; Světlík, I.; Kameník, J.; Dreslerová, D.; Pachnerová Brabcová, K.; Tecl, J.; et al. A new AMS facility MILEA at the Nuclear Physics Institute in Řež. In Proceedings of the 15th International Conference on Accelerator Mass Spectrometry, ANSTO, Sydney, NSW, Australia, 15–19 November 2021; Available online: https://www.ams15sydney.com/program/PosterT7.01 (accessed on 16 January 2022).
- Radiocarbon Competence Center. Available online: https://www.atomki.hu/osztalyok/21/bemutatkozas (accessed on 22 January 2022).
- Synal, H.-A.; Stocker, M.; Suter, M. MICADAS: A new compact radiocarbon AMS system. Nucl. Instrum. Meth. Phys. Res. B 2007, 259, 7–13. [Google Scholar] [CrossRef]
- Longin, R. New method of collagen extraction for radiocarbon dating. Nature 1971, 230, 241–242. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Polach, H.A. Radiocarbon Dating Practices at ANU; The Australian National University: Canberra, ACT, Australia, 1985. [Google Scholar]
- Orsovszki, G.; Rinyu, L. Flame-sealed tube graphitization using zinc as the sole reduction agent: Precision improvement of Environ MICADAS 14C measurements on graphite targets. Radiocarbon 2015, 57, 979–990. [Google Scholar] [CrossRef]
- Handlos, P.; Světlík, I.; Horáčková, L.; Fejgl, M.; Kotik, L.; Brychová, V.; Megisová, N.; Marecová, K. Bomb peak: Radiocarbon dating of skeletal remains in routine forensic medical practice. Radiocarbon 2018, 60, 1017–1028. [Google Scholar] [CrossRef]
- Reimer, P.; Austin, W.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Nothern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Golec, M.; Zajíček, P.; Světlík, I.; Pachnerová Brabcová, K.; Maříkova, L.; Čermáková, E.; Ovsonkova, Z.A. Prehistoric charcoal graffiti discovered in Kateřinská cave, Czech Republic. Radiocarbon 2021, 63, 473–480. [Google Scholar] [CrossRef]
- Andre, M.F. Sandstone weathering rates at the Angkor Temples (Cambodia). In Heritage, Weathering and Conservation; Fort, R., Alvarez De Buergo, M., Gomez-Heras, M., Vasquez-Calvo, C., Eds.; Taylor & Francis Group: London, UK, 2006; Volume 1, pp. 165–175. [Google Scholar]
- Uchida, E.; Cunin, O.; Suda, C.; Ueno, A.; Nakagawa, T. Consideration on the construction process and the sandstone quarries during the Angkor period based on the magnetic susceptibility. J. Archaeol. Sci. 2007, 34, 924–935. [Google Scholar] [CrossRef]
- Uchida, E.; Watanabe, R.; Cheng, R.; Nakamura, Y.; Takeyama, T. Non-destructive in-situ classification of sandstones used in the Angkor monuments of Cambodia using a portable X-ray fluorescence analyzer and magnetic susceptibility meter. J. Archaeol. Sci. Rep. 2021, 39, 103137. [Google Scholar] [CrossRef]
- Kučera, J.; Novák, J.K.; Kranda, K.; Poncar, J.; Krausová, I.; Soukal, L.; Cunin, O.; Lang, M. INAA and petrological study of sandstones from the Angkor monuments. J. Radioanal. Nucl. Chem. 2008, 278, 299–306. [Google Scholar] [CrossRef]
- Řanda, Z.; Kučera, J.; Soukal, L. Elemental characterization of the new Czech meteorite Morávka by neutron and photon activation analysis. J. Radioanal. Nucl. Chem. 2003, 257, 275–283. [Google Scholar] [CrossRef]
- Vacínová, L.; Militký, J.; Fikrle, M. Coins of the Roman Republic; Národní Muzeum: Prague, Czech Republic, 2018. [Google Scholar]
- Schneider, P.; Militký, J.; Zaoral, R.; Fikrle, M. Levínská Olešnice: Nález Mincí ze 13. Století; Národní Muzeum: Prague, Czech Republic, 2018. [Google Scholar]
- Budaj, M.; Polanský, L.; Fikrle, M.; Kriz, E. Uherské Středověké Dukáty ze Sbírky Národního Muzea; Národní Muzeum and Abalon: Prague, Czech Republic, 2020. [Google Scholar]
- Kmošek, J.; Odler, M.; Fikrle, M.; Korchegina, Y.V. Invisible connections. Early dynastic and old Kingdom Egyptian metalwork in the Egyptian Museum of Leipzig University. J. Archaeol. Sci. 2018, 96, 191–207. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Kučera, J.; Skytte, L.; Kameník, J.; Havránek, V.; Smolík, J.; Velemínský, P.; Lynnerup, N.; Brůžek, J.; Vellev, J. Was he murdered or was he not? Part I: Analyses of mercury in the remains of Tycho Brahe. Archaeometry 2013, 55, 1187–1195. [Google Scholar] [CrossRef]
- Kučera, J.; Rasmussen, K.L.; Kameník, J.; Kameník, J.; Kubešová, M.; Skytte, L.; Povýšil, C.; Havránek, V.; Velemínský, P.; Lynnerup, N.; et al. Was he murdered or was he not?—Part II. Multielemental analyses of hair and bone samples from Tycho Brahe and histopathology of his bones. Archaeometry 2017, 59, 918–933. [Google Scholar] [CrossRef]
- Spargo, P.E.; Pounds, C.A. Newton´s ´Derangements of his intellect´: New light on an old problem. Notes Rec. R. Soc. Lond. 1979, 34, 11–32. [Google Scholar] [CrossRef]
- Kacki, S.; Velemínský, P.; Lynnerup, N.; Kaupová, S.; Jeanson, A.L.; Povýšil, C.; Horák, M.; Kučera, J.; Rasmussen, K.L.; Podliska, J.; et al. Rich table but short life: Diffuse idiopathic skeletal hyperostosis in Danish astronomer Tycho Brahe (1546–1601) and its possible consequences. PLoS ONE 2018, 13, e0195920. [Google Scholar] [CrossRef] [Green Version]
- Van der Plicht, J.; Drtikolová Kaupová, S.; Velemínský, P.; Smolík, J.; Kučera, J.; Kameník, J.; Havránek, V.; Brůžek, J.; Vellev, J.; Rasmussen, K.L. On the diet of Tycho Brahe and his wife: Did they consume fish from stagnant pools? Herit. Sci. 2020, 8, 73. [Google Scholar] [CrossRef]
- Kučera, J. Laboratory of neutron activation analysis at the Nuclear Physics Institute of the ASCR, Řež. Nucl. Phys. News 2011, 21, 30–35. [Google Scholar] [CrossRef]
- Hnatowicz, V.; Vacík, J.; Macková, A.; Kučera, J. Laboratory for materials analysis by nuclear analytical techniques. Nucl. Phys. News 2016, 26, 21–26. [Google Scholar] [CrossRef]
- Kučera, J. Activation analysis in Czechoslovakia and in the Czech Republic: More than 50 years of activities. J. Radioanal. Nucl. Chem. 2018, 318, 1473–1492. [Google Scholar] [CrossRef]
Sample | Total Nitrogen, wt% a |
---|---|
Tree bark | 0.74 ± 0.02 |
Leather | 14.17 ± 0.17 |
Bracelet | 0.45 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kučera, J.; Kameník, J.; Havránek, V.; Krausová, I.; Světlík, I.; Pachnerová Brabcová, K.; Fikrle, M.; Chvátil, D. Recent Achievements in NAA, PAA, XRF, IBA and AMS Applications for Cultural Heritage Investigations at Nuclear Physics Institute, Řež. Physics 2022, 4, 491-503. https://doi.org/10.3390/physics4020033
Kučera J, Kameník J, Havránek V, Krausová I, Světlík I, Pachnerová Brabcová K, Fikrle M, Chvátil D. Recent Achievements in NAA, PAA, XRF, IBA and AMS Applications for Cultural Heritage Investigations at Nuclear Physics Institute, Řež. Physics. 2022; 4(2):491-503. https://doi.org/10.3390/physics4020033
Chicago/Turabian StyleKučera, Jan, Jan Kameník, Vladimír Havránek, Ivana Krausová, Ivo Světlík, Kateřina Pachnerová Brabcová, Marek Fikrle, and David Chvátil. 2022. "Recent Achievements in NAA, PAA, XRF, IBA and AMS Applications for Cultural Heritage Investigations at Nuclear Physics Institute, Řež" Physics 4, no. 2: 491-503. https://doi.org/10.3390/physics4020033
APA StyleKučera, J., Kameník, J., Havránek, V., Krausová, I., Světlík, I., Pachnerová Brabcová, K., Fikrle, M., & Chvátil, D. (2022). Recent Achievements in NAA, PAA, XRF, IBA and AMS Applications for Cultural Heritage Investigations at Nuclear Physics Institute, Řež. Physics, 4(2), 491-503. https://doi.org/10.3390/physics4020033