Ion Implantation into Nonconventional GaN Structures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Implantation Damage Formation in a-, c- and m-Plane GaN
3.2. Ion Implantation in GaN Nanowires
3.3. Doping GaN via Ion Implantation
3.3.1. Optical Doping with Rare Earth Ions
Implanted GaN Thin Films
Implanted GaN Nanowires
3.3.2. Electrical Doping
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Nobel Prize in Physics 2014. NobelPrize.org. Nobel Prize Outreach AB 2021. Available online: https://www.nobelprize.org/prizes/physics/2014/summary/ (accessed on 4 October 2021).
- Taki, T.; Strassburg, M. Review—Visible LEDs: More than efficient light. ECS J. Solid State Sci. Technol. 2019, 9, 15017. [Google Scholar] [CrossRef]
- Masui, H.; Nakamura, S.; Denbaars, S.; Mishra, U.K. Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges. IEEE Trans. Electron Devices 2010, 57, 88–100. [Google Scholar] [CrossRef]
- Monavarian, M.; Rashidi, A.; Feezell, D. A Decade of Nonpolar and Semipolar III-Nitrides: A Review of Successes and Challenges. Phys. Status Solidi 2018, 216, 1800628. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Balakrishnan, K.; Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2008, 2, 77–84. [Google Scholar] [CrossRef]
- O’Donnell, K.P.; Auf der Maur, M.A.; Di Carlo, A.; Lorenz, K. It’s not easy being green: Strategies for all-nitrides, all-colour solid state lighting. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2012, 6, 49–52. [Google Scholar] [CrossRef]
- Consonni, V. Self-induced growth of GaN nanowires by molecular beam epitaxy: A critical review of the formation mechanisms. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2013, 7, 699–712. [Google Scholar] [CrossRef]
- Roccaforte, F.; Fiorenza, P.; Lo Nigro, R.; Giannazzo, F.; Greco, G. Physics and technology of gallium nitride materials for power electronics. Nuovo Cim. 2018, 41, 625–681. [Google Scholar] [CrossRef]
- Yu, H.; McCarthy, L.; Rajan, S.; Keller, S.; Denbaars, S.; Speck, J.; Mishra, U. Ion implanted AlGaN-GaN HEMTs with nonalloyed Ohmic contacts. IEEE Electron Device Lett. 2005, 26, 283–285. [Google Scholar] [CrossRef]
- Umeda, H.; Takizawa, T.; Anda, Y.; Ueda, T.; Tanaka, T. High-voltage isolation technique using Fe ion implantation for monolithic integration of AlGaN/GaN transistors. IEEE Trans. Electron Devices 2012, 60, 771–775. [Google Scholar] [CrossRef]
- Nanjo, T.; Takeuchi, M.; Suita, M.; Oishi, T.; Abe, Y.; Tokuda, Y.; Aoyagi, Y. Remarkable breakdown voltage enhancement in AlGaN channel high electron mobility transistors. Appl. Phys. Lett. 2008, 92, 263502. [Google Scholar] [CrossRef]
- Leonard, J.T.; Cohen, D.A.; Yonkee, B.P.; Farrell, R.M.; Margalith, T.; Lee, S.G.; DenBaars, S.P.; Speck, J.S.; Nakamura, S. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture. Appl. Phys. Lett. 2015, 107, 11102. [Google Scholar] [CrossRef]
- Rajabi, S.; Mandal, S.; Ercan, B.; Li, H.; Laurent, M.A.; Keller, S.; Chowdhury, S. A Demonstration of nitrogen polar gallium nitride current aperture vertical electron transistor. IEEE Electron Device Lett. 2019, 40, 885–888. [Google Scholar] [CrossRef]
- Pągowska, K.; Kozubal, M.; Taube, A.; Kruszka, R.; Kamiński, M.; Kwietniewski, N.; Juchniewicz, M.; Szerling, A. The interplay between damage- and chemical-induced isolation mechanism in Fe+-implanted AlGaN/GaN HEMT structures. Mater. Sci. Semicond. Process. 2021, 127, 105694. [Google Scholar] [CrossRef]
- Narita, T.; Kachi, T.; Kataoka, K.; Uesugi, T. P-type doping of GaN (000) by magnesium ion implantation. Appl. Phys. Express 2016, 10, 16501. [Google Scholar] [CrossRef]
- Chichibu, S.F.; Shima, K.; Kojima, K.; Takashima, S.-Y.; Ueno, K.; Edo, M.; Iguchi, H.; Narita, T.; Kataoka, K.; Ishibashi, S.; et al. Room temperature photoluminescence lifetime for the near-band-edge emission of epitaxial and ion-implanted GaN on GaN structures. Jpn. J. Appl. Phys. 2019, 58, SC0802. [Google Scholar] [CrossRef]
- Tanaka, R.; Takashima, S.; Ueno, K.; Matsuyama, H.; Edo, M.; Nakagawa, K. Mg implantation dose dependence of MOS channel characteristics in GaN double-implanted MOSFETs. Appl. Phys. Express 2019, 12, 54001. [Google Scholar] [CrossRef]
- Nomoto, K.; Tajima, T.; Mishima, T.; Satoh, M.; Nakamura, T. Remarkable reduction of on-resistance by ion implantation in GaN/AlGaN/GaN HEMTs with low gate leakage current. IEEE Electron Device Lett. 2007, 28, 939–941. [Google Scholar] [CrossRef]
- Nanjo, T.; Takeuchi, M.; Suita, M.; Abe, Y.; Oishi, T.; Tokuda, Y.; Aoyagi, Y. First operation of AlGaN channel high electron mobility transistors. Appl. Phys. Express 2008, 1, 11101. [Google Scholar] [CrossRef]
- Mandal, S.; Agarwal, A.; Ahmadi, E.; Bhat, K.M.; Ji, D.; Laurent, M.A.; Keller, S.; Chowdhury, S. Dispersion free 450-V p GaN-gated CAVETs with Mg-ion implanted blocking layer. IEEE Electron. Device Lett. 2017, 38, 933–936. [Google Scholar] [CrossRef]
- Ji, D.; Agarwal, A.; Li, W.; Keller, S.; Chowdhury, S. Demonstration of GaN current aperture vertical electron transistors with aperture region formed by ion implantation. IEEE Trans. Electron Devices 2018, 65, 483–487. [Google Scholar] [CrossRef]
- Ji, D.; Li, S.; Ercan, B.; Ren, C.; Chowdhury, S. Design and fabrication of ion-implanted moat etch termination resulting in 0.7 mΩ⋅cm2/1500 V GaN Diodes. IEEE Electron Device Lett. 2020, 41, 264–267. [Google Scholar] [CrossRef]
- Tanaka, R.; Takashima, S.; Ueno, K.; Matsuyama, H.; Edo, M. Demonstration of 1200 V/1.4 mΩcm2 vertical GaN planar MOSFET fabricated by an all ion implantation process. Jpn. J. Appl. Phys. 2020, 59, SGGD02. [Google Scholar] [CrossRef]
- Yoshino, M.; Ando, Y.; Deki, M.; Toyabe, T.; Kuriyama, K.; Honda, Y.; Nishimura, T.; Amano, H.; Kachi, T.; Nakamura, T. Fully ion implanted normally-Off GaN DMOSFETs with ALD-Al2O3 gate dielectrics. Materials 2019, 12, 689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozbek, A.M.; Baliga, B.J. Planar nearly ideal edge-termination technique for GaN devices. IEEE Electron Device Lett. 2011, 32, 300–302. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, M.; Wong, H.-Y.; Lin, Y.; Srivastava, P.; Hatem, C.; Azize, M.; Piedra, D.; Yu, L.; Sumitomo, T.; et al. Origin and control of OFF-state leakage current in GaN-on-Si vertical diodes. IEEE Trans. Electron Devices 2015, 62, 2155–2161. [Google Scholar] [CrossRef] [Green Version]
- Taube, A.; Kamińska, E.; Kozubal, M.; Kaczmarski, J.; Wojtasiak, W.; Jasiński, J.; Borysiewicz, M.A.; Ekielski, M.; Juchniewicz, M.; Grochowski, J.; et al. Ion implantation for isolation of AlGaN/GaN HEMTs using C or Al. Phys. Status Solidi 2015, 212, 1162–1169. [Google Scholar] [CrossRef]
- Sun, S.; Fu, K.; Yu, G.; Zhang, Z.; Song, L.; Deng, X.; Qi, Z.; Li, S.; Su, Q.; Cai, Y.; et al. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation. Appl. Phys. Lett. 2016, 108, 13507. [Google Scholar] [CrossRef]
- Iucolano, F.; Giannazzo, F.; Roccaforte, F.; Romano, L.; Grimaldi, M.; Raineri, V. Quantitative determination of depth carrier profiles in ion-implanted Gallium Nitride. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2007, 257, 336–339. [Google Scholar] [CrossRef]
- Pankove, J.I.; Hutchby, J.A. Photoluminescence of ion-implanted GaN. J. Appl. Phys. 1976, 47, 5387–5390. [Google Scholar] [CrossRef]
- Ronning, C. Ion implantation into gallium nitride. Phys. Rep. 2001, 351, 349–385. [Google Scholar] [CrossRef]
- Kucheyev, S.; Williams, J.; Pearton, S. Ion implantation into GaN. Mater. Sci. Eng. R Rep. 2001, 33, 51–108. [Google Scholar] [CrossRef]
- Lorenz, K.; Wendler, E. Implantation damage formation in GaN and ZnO. In Ion Implantation; Goorsky, M.S., Ed.; InTech: London, UK, 2012; pp. 237–264. Available online: http://www.issp.ac.ru/ebooks/books/open/Ion_Implantation.pdf (accessed on 20 April 2022).
- Turos, A. On the mechanism of damage buildup in gallium nitride. Radiat. Eff. Defects Solids 2013, 168, 431–441. [Google Scholar] [CrossRef]
- Wendler, E.; Wesch, W.; Azarov, A.; Catarino, N.; Redondo-Cubero, A.; Alves, E.; Lorenz, K. Comparison of low- and room-temperature damage formation in Ar ion implanted GaN and ZnO. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 307, 394–398. [Google Scholar] [CrossRef]
- Titov, A.I.; Karabeshkin, K.V.; Struchkov, A.I.; Karaseov, P.A.; Azarov, A. Radiation tolerance of GaN: The balance between radiation-stimulated defect annealing and defect stabilization by implanted atoms. J. Phys. D Appl. Phys. 2022, 55, 175103. [Google Scholar] [CrossRef]
- Lorenz, K.; Peres, M.; Franco, N.; Marques, J.G.; Miranda, S.M.C.; Magalhães, S.; Monteiro, T.; Wesch, W.; Alves, E.; Wendler, E. Radiation damage formation and annealing in GaN and ZnO. In Proceedings of the SPIE OPTO 2011, San Francisco, CA, USA, 22–27 January 2011; Volume 7940, p. 79400O. [Google Scholar] [CrossRef]
- Pągowska, K.; Ratajczak, R.; Stonert, A.; Turos, A.; Nowicki, L.; Sathish, N.; Jóźwik, P.; Muecklich, A. RBS/Channeling and TEM study of damage buildup in ion bombarded GaN. Acta Phys. Pol. A 2011, 120, 153–155. [Google Scholar] [CrossRef]
- Ruterana, P.; Lacroix, B.; Lorenz, K. A mechanism for damage formation in GaN during rare earth ion implantation at medium range energy and room temperature. J. Appl. Phys. 2011, 109, 13506. [Google Scholar] [CrossRef] [Green Version]
- Kucheyev, S.O.; Williams, J.S.; Zou, J.; Jagadish, C. Dynamic annealing in III-nitrides under ion bombardment. J. Appl. Phys. 2004, 95, 3048–3054. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, S.; Lacroix, B.; Declémy, A.; Lorenz, K.; Ruterana, P. Mechanisms of damage formation in Eu-implanted AlN. J. Appl. Phys. 2012, 112, 73525. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Liu, H.; Lu, X.; Kang, L.; Sheng, Y.; Xiong, A. Atomic configurations of basal stacking faults and dislocation loops in GaN irradiated with Xe20+ ions at room temperature. Appl. Surf. Sci. 2019, 486, 15–21. [Google Scholar] [CrossRef]
- Alves, E.; Lorenz, K.; Catarino, N.; Peres, M.; Dias, M.; Mateus, R.; Alves, L.C.; Corregidor, V.; Barradas, N.P.; Fonseca, M.; et al. An insider view of the Portuguese Ion Beam Laboratory. Eur. Phys. J. Plus 2021, 136, 684. [Google Scholar] [CrossRef]
- Lorenz, K.; Wendler, E.; Redondo-Cubero, A.; Catarino, N.; Chauvat, M.-P.; Schwaiger, S.; Scholz, F.; Alves, E.; Ruterana, P. Implantation damage formation in a-, c- and m-plane GaN. Acta Mater. 2017, 123, 177–187. [Google Scholar] [CrossRef]
- Faye, D.N.; Biquard, X.; Nogales, E.; Felizardo, M.; Peres, M.; Redondo-Cubero, A.; Auzelle, T.; Daudin, B.; Tizei, L.H.; Kociak, M.; et al. Incorporation of europium into GaN nanowires by ion implantation. J. Phys. Chem. C 2019, 123, 11874–11887. [Google Scholar] [CrossRef]
- Auzelle, T.; Haas, B.; Minj, A.; Bougerol, C.; Rouvière, J.-L.; Cros, A.; Colchero, J.; Daudin, B. The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires. J. Appl. Phys. 2015, 117, 245303. [Google Scholar] [CrossRef]
- Jozwik, P.; Nowicki, L.; Ratajczak, R.; Stonert, A.; Mieszczynski, C.; Turos, A.; Morawiec, K.; Lorenz, K.; Alves, E. Monte Carlo simulations of ion channeling in crystals containing dislocations and randomly displaced atoms. J. Appl. Phys. 2019, 126, 195107. [Google Scholar] [CrossRef]
- Lorenz, K.; Barradas, N.P.; Alves, E.; Roqan, I.S.; Nogales, E.; Martin, R.W.; O’Donnell, K.P.; Gloux, F.; Ruterana, P. Structural and optical characterization of Eu-implanted GaN. J. Phys. D: Appl. Phys. 2009, 42, 165103. [Google Scholar] [CrossRef]
- Hecking, N.; Heidemann, K.; Kaat, E.T. Model of temperature dependent defect interaction and amorphization in crystalline silicon during ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1986, 15, 760–764. [Google Scholar] [CrossRef]
- Wendler, E.; Kamarou, A.; Alves, E.; Gärtner, K.; Wesch, W. Three-step amorphisation process in ion-implanted GaN at 15 K. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2003, 206, 1028–1032. [Google Scholar] [CrossRef]
- Faye, D.N.; Wendler, E.; Felizardo, M.; Magalhaes, S.; Alves, E.; Brunner, F.; Weyers, M.; Lorenz, K. Mechanisms of implantation damage formation in AlxGa1–xN compounds. J. Phys. Chem. C 2016, 120, 7277–7283. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Azarov, A.Y.; Titov, A.I.; Karaseov, P.A.; Kuchumova, T.M. Energy spike effects in ion-bombarded GaN. J. Phys. D Appl. Phys. 2009, 42, 85309. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Williams, J.S.; Jagadish, C.; Zou, J.; Li, G.; Titov, A.I. Effect of ion species on the accumulation of ion-beam damage in GaN. Phys. Rev. B 2001, 64, 35202. [Google Scholar] [CrossRef] [Green Version]
- Biersack, J.P.; Ziegler, J.F. The stopping and range of ions in solids. In Ion Implantation Techniques; Ryssel, H., Glawischnig, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1982; pp. 122–156. [Google Scholar] [CrossRef]
- Macková, A.; Malinský, P.; Jagerová, A.; Mikšová, R.; Sofer, Z.; Klímová, K.; Mikulics, M.; Böttger, R.; Akhmadaliev, S.; Oswald, J. Damage accumulation and implanted Gd and Au position in a- and c-plane GaN. Thin Solid Film. 2019, 680, 102–113. [Google Scholar] [CrossRef]
- Catarino, N.; Nogales, E.; Franco, N.; Darakchieva, V.; Miranda, S.M.C.; Méndez, B.; Alves, E.; Marques, J.G.; Lorenz, K. Enhanced dynamic annealing and optical activation of Eu implanted a-plane GaN. Europhys. Lett. 2012, 97, 68004. [Google Scholar] [CrossRef]
- Turos, A.; Jóźwik, P.; Wójcik, M.; Gaca, J.; Ratajczak, R.; Stonert, A. Mechanism of damage buildup in ion bombarded ZnO. Acta Mater. 2017, 134, 249–256. [Google Scholar] [CrossRef]
- Lacroix, B.; Leclerc, S.; Declemy, A.; Lorenz, K.; Alves, E.; Ruterana, P. Mechanisms of damage formation in Eu-implanted GaN probed by X-ray diffraction. Europhys. Lett. 2011, 96, 46002. [Google Scholar] [CrossRef]
- Lorenz, K.; Nogales, E.; Miranda, S.; Franco, N.; Méndez, B.; Alves, E.; Tourbot, G.; Daudin, B. Enhanced red emission from praseodymium-doped GaN nanowires by defect engineering. Acta Mater. 2013, 61, 3278–3284. [Google Scholar] [CrossRef]
- Debelle, A.; Crocombette, J.-P.; Boulle, A.; Chartier, A.; Jourdan, T.; Pellegrino, S.; Bachiller-Perea, D.; Carpentier, D.; Channagiri, J.; Nguyen, T.-H.; et al. Lattice strain in irradiated materials unveils a prevalent defect evolution mechanism. Phys. Rev. Mater. 2018, 2, 13604. [Google Scholar] [CrossRef] [Green Version]
- Mendes, P.; Lorenz, K.; Alves, E.; Schwaiger, S.; Scholz, F.; Magalhães, S. Measuring strain caused by ion implantation in GaN. Mater. Sci. Semicond. Process. 2019, 98, 95–99. [Google Scholar] [CrossRef]
- O’Donnell, K.P.; Hourahine, B. Rare earth doped III-nitrides for optoelectronics. Eur. Phys. J. Appl. Phys. 2006, 36, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, J.P.S.; Correia, M.R.; Vermeersch, R.; Verheij, D.; Jacopin, G.; Pernot, J.; Monteiro, T.; Cardoso, S.; Lorenz, K.; Daudin, B.; et al. Europium-implanted AlN nanowires for red light-emitting diodes. ACS Appl. Nano Mater. 2022, 5, 972–984. [Google Scholar] [CrossRef]
- Nishikawa, A.; Kawasaki, T.; Furukawa, N.; Terai, Y.; Fujiwara, Y. Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection. Appl. Phys. Express 2009, 2, 71004. [Google Scholar] [CrossRef]
- Lorenz, K.; Alves, E.; Roqan, I.S.; O’Donnell, K.P.; Nishikawa, A.; Fujiwara, Y.; Boćkowski, M. Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy. Appl. Phys. Lett. 2010, 97, 111911. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, K.; Alves, E.; Gloux, F.; Ruterana, P. RE implantation and annealing of III-nitrides. In Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications; O’Donnell, K., Dierolf, V., Eds.; Springer: Dordrecht, Germany, 2010; pp. 25–54. [Google Scholar] [CrossRef]
- Alves, E.; Lorenz, K.; Vianden, R.; Boemare, C.; Soares, M.J.; Monteiro, T. Optical doping of nitrides by ion implantation. Mod. Phys. Lett. B 2001, 15, 1281–1287. [Google Scholar] [CrossRef] [Green Version]
- Wahl, U.; Alves, E.; Lorenz, K.; Correia, J.; Monteiro, T.; De Vries, B.; Vantomme, A.; Vianden, R. Lattice location and optical activation of rare earth implanted GaN. Mater. Sci. Eng. B 2003, 105, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Karpiński, J.; Jun, J.; Porowski, S. Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN. J. Cryst. Growth 1984, 66, 1–10. [Google Scholar] [CrossRef]
- Alves, E.; Da Silva, M.; Marques, J.; Soares, J.; Freitag, K. Annealing behavior and lattice site location of Hf implanted GaN. Mater. Sci. Eng. B 1999, 59, 207–210. [Google Scholar] [CrossRef]
- Lorenz, K.; Wahl, U.; Alves, E.; Nogales, E.; Dalmasso, S.; Martin, R.; O’Donnell, K.; Wojdak, M.; Braud, A.; Monteiro, T.; et al. High temperature annealing of rare earth implanted GaN films: Structural and optical properties. Opt. Mater. 2006, 28, 750–758. [Google Scholar] [CrossRef]
- Lorenz, K.; Wahl, U.; Alves, E.; Dalmasso, S.; Martin, R.W.; O’Donnell, K.P.; Ruffenach, S.; Briot, O. High-temperature annealing and optical activation of Eu-implanted GaN. Appl. Phys. Lett. 2004, 85, 2712–2714. [Google Scholar] [CrossRef]
- Nogales, E.; Martin, R.W.; O’Donnell, K.P.; Lorenz, K.; Alves, E.; Ruffenach, S.; Briot, O. Failure mechanism of AlN nanocaps used to protect rare earth-implanted GaN during high temperature annealing. Appl. Phys. Lett. 2006, 88, 31902. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, K.; Miranda, S.M.C.; Alves, E.; Roqan, I.S.; O’Donnell, K.P.; Boćkowski, M. High pressure annealing of Europium implanted GaN. In Proceedings of the SPIE OPTO 2012, San Francisco, CA, USA, 21–26 January 2012; Volume 8262, p. 82620C. [Google Scholar] [CrossRef] [Green Version]
- Roqan, I.S.; O’Donnell, K.P.; Martin, R.W.; Edwards, P.R.; Song, S.F.; Vantomme, A.; Lorenz, K.; Alves, E.; Bockowski, M. Identification of the prime optical center in GaN:Eu3+. Phys. Rev. B 2010, 81, 85209. [Google Scholar] [CrossRef]
- Mackova, A.; Malinský, P.; Sofer, Z.; Šimek, P.; Sedmidubský, D.; Mikulics, M.; Wilhelm, R. A study of the structural properties of GaN implanted by various rare earth ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 307, 446–451. [Google Scholar] [CrossRef]
- O’Donnell, K.P.; Edwards, P.R.; Yamaga, M.; Lorenz, K.; Kappers, M.J.; Bockowski, M. Crystalfield symmetries of luminescent Eu3+ centers in GaN: The importance of the 5D0 to 7F1 transition. Appl. Phys. Lett. 2016, 108, 22102. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; O’Donnell, K.P.; Edwards, P.R.; Cameron, D.; Lorenz, K.; Kappers, M.J.; Bockowski, M.; Yamaga, M.; Prakash, R. Luminescence of Eu3+ in GaN(Mg, Eu): Transitions from the 5D1 level. Appl. Phys. Lett. 2017, 111, 241105. [Google Scholar] [CrossRef] [Green Version]
- Pearton, S.J.; Vartuli, C.B.; Zolper, J.C.; Yuan, C.; Stall, R.A. Ion implantation doping and isolation of GaN. Appl. Phys. Lett. 1995, 67, 1435–1437. [Google Scholar] [CrossRef]
- Irokawa, Y.; Fujishima, O.; Kachi, T.; Nakano, Y. Electrical activation characteristics of silicon-implanted GaN. J. Appl. Phys. 2005, 97, 83505. [Google Scholar] [CrossRef]
- Anderson, T.; Feigelson, B.; Kub, F.; Tadjer, M.; Hobart, K.; Mastro, M.; Hite, J.; Eddy, C. Activation of Mg implanted in GaN by multicycle rapid thermal annealing. Electron. Lett. 2014, 50, 197–198. [Google Scholar] [CrossRef]
- Bockowski, M.; Omori, M.; Yamada, S.; Furukawa, Y.; Suzuki, H.; Narita, T.; Kataoka, K.; Horita, M.; Suda, J.; Kachi, T. Highly effective activation of Mg-implanted p-type GaN by ultra-high-pressure annealing. Appl. Phys. Lett. 2019, 115, 142104. [Google Scholar] [CrossRef]
- Wahl, U.; Amorim, L.M.; Augustyns, V.; Costa, A.; David-Bosne, E.; Lima, T.A.L.; Lippertz, G.; Correia, J.G.; da Silva, M.R.; Kappers, M.J.; et al. Lattice location of Mg in GaN: A fresh look at doping limitations. Phys. Rev. Lett. 2017, 118, 95501. [Google Scholar] [CrossRef] [Green Version]
- Meyers, V.; Rocco, E.; Hogan, K.; McEwen, B.; Shevelev, M.; Sklyar, V.; Jones, K.; Derenge, M.; Shahedipour-Sandvik, F. P-type conductivity and suppression of green luminescence in Mg/N co-implanted GaN by gyrotron microwave annealing. J. Appl. Phys. 2021, 130, 85704. [Google Scholar] [CrossRef]
- Oikawa, T.; Saijo, Y.; Kato, S.; Mishima, T.; Nakamura, T. Formation of definite GaN p-n junction by Mg-ion implantation to n−-GaN epitaxial layers grown on a high-quality free-standing GaN substrate. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 365, 168–170. [Google Scholar] [CrossRef]
- Iwata, K.; Sakurai, H.; Arai, S.; Nakashima, T.; Narita, T.; Kataoka, K.; Bockowski, M.; Nagao, M.; Suda, J.; Kachi, T.; et al. Defect evolution in Mg ions implanted GaN upon high temperature and ultrahigh N2 partial pressure annealing: Transmission electron microscopy analysis. J. Appl. Phys. 2020, 127, 105106. [Google Scholar] [CrossRef]
- Sierakowski, K.; Jakiela, R.; Lucznik, B.; Kwiatkowski, P.; Iwinska, M.; Turek, M.; Sakurai, H.; Kachi, T.; Bockowski, M. High pressure processing of ion implanted GaN. Electronics 2020, 9, 1380. [Google Scholar] [CrossRef]
- Narita, T.; Sakurai, H.; Bockowski, M.; Kataoka, K.; Suda, J.; Kachi, T. Electric-field-induced simultaneous diffusion of Mg and H in Mg-doped GaN prepared using ultra-high-pressure annealing. Appl. Phys. Express 2019, 12, 111005. [Google Scholar] [CrossRef]
- Lardeau-Falcy, A.; Amichi, L.; Coig, M.; Kanyandekwe, J.; Milesi, F.; Grenier, A.; Veillerot, M.; Eymery, J.; Mazen, F. Diffusion and aggregation of Mg implanted in GaN on Si. In Proceedings of the 2018 22nd International Conference on Ion Implantation Technology (IIT), Würzburg, Germany, 16–21 September 2018; pp. 74–77. [Google Scholar] [CrossRef]
- Jakiela, R.; Barcz, A.; Dumiszewska, E.; Jagoda, A. Si diffusion in epitaxial GaN. Phys. Status Solidi 2006, 3, 1416–1419. [Google Scholar] [CrossRef]
- Pan, C.J.; Chi, G.C.; Pong, B.J.; Sheu, J.K.; Chen, J.Y. Si diffusion in p-GaN. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2004, 22, 1727. [Google Scholar] [CrossRef]
- Ostermaier, C.; Ahn, S.-I.; Potzger, K.; Helm, M.; Kuzmik, J.; Pogany, D.; Strasser, G.; Lee, J.-H.; Hahm, S.-H.; Lee, J.-H. Study of Si implantation into Mg-doped GaN for MOSFETs. Phys. Status Solidi 2010, 7, 1964–1966. [Google Scholar] [CrossRef]
- Lamhamdi, M.; Cayrel, F.; Bazin, A.; Collard, E.; Alquier, D. Carrier profiling in Si-implanted gallium nitride by Scanning Capacitance Microscopy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2011, 275, 37–40. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenz, K. Ion Implantation into Nonconventional GaN Structures. Physics 2022, 4, 548-564. https://doi.org/10.3390/physics4020036
Lorenz K. Ion Implantation into Nonconventional GaN Structures. Physics. 2022; 4(2):548-564. https://doi.org/10.3390/physics4020036
Chicago/Turabian StyleLorenz, Katharina. 2022. "Ion Implantation into Nonconventional GaN Structures" Physics 4, no. 2: 548-564. https://doi.org/10.3390/physics4020036
APA StyleLorenz, K. (2022). Ion Implantation into Nonconventional GaN Structures. Physics, 4(2), 548-564. https://doi.org/10.3390/physics4020036