Numerical Relativity as a New Tool for Fundamental Cosmology
Abstract
:1. Introduction
2. Introduction to Numerical Relativity
- the necessary `formal dressing’ of the field equations so they are suitable for numerical integration; and
- the basic structure of the computation involving specifying initial data, numerical integration of the PDE system as well as code validation.
2.1. Formal Dressing of the Field Equations
2.2. Basic structure of Numerical Relativity Codes
- specifying initial conditions,
- evolving the PDE system, and
- code validation.
3. Smoothing through Ultralocality
3.1. Conventional Picture of Smoothing
- Non-generic, select initial conditions. The mechanism of inflation or slow contraction can only start if there exists a patch of sufficient size (Hubble volume or larger) with only small deviations from homogeneity and isotropy and the patch is dominated by a homogeneous scalar field with special potential energy density, initial field value and velocity to achieve the necessary value of .
- Causal connectedness. Homogeneity and isotropy over exponentially many Hubble volumes originate from the assumed homogeneity and isotropy of the initial patch. Generic inhomogeneities outside the initial patch do not become smoothed out; they only become inaccessible to the local observer within the initial patch. In other words, smoothing only occurs in select patches whose conditions obviously favor inflation or slow contraction.
3.2. Smoothing, Robustness and Ultralocality
- First, the overall Hubble-normalized spatial curvature contribution does not decay before the overall Hubble-normalized anisotropy contribution decays. Instead, the sequence is that the gradient contributions to the spatial curvature and shear decay first, before the homogeneous spatial curvature and shear contributions decay.
- Second, smoothing does not require causal connectedness. In fact, regions of the inhomogeneous, anisotropic, and spatially curved initial patch become causally disconnected well before they reach the smooth FRW state, as the Hubble radius shrinks rapidly while the scale factor and, hence, the initial patch hardly shrinks at all. In the example of Figure 1, by the time the initial patch reaches the spatially curved and anisotropic ultralocal state at , it consists of ∼ causally disconnected and not yet smooth Hubble volumes that each individually converge to the flat FRW state by .
- Third, smoothing is universal, i.e., smoothing is not restricted to regions that are initially nearly homogeneous and isotropic. Instead, as illustrated in Figure 1, spacetime points of the inhomogeneous, anisotropic and spatially curved initial patch independently converges to the smooth FRW state.
- Fourth, the scalar field need not dominate the energy density well before reaching the flat FRW state. Instead, together with the other gradient contributions, the scalar field spatial gradients decay because of the ultralocality of contraction. As illustrated in Figure 3, the ultralocal state is generically spatially curved and anisotropic with the scalar field energy density being sub-dominant in many regions. The flat FRW state is reached because a canonical scalar field with a negative potential energy density destabilizes the anisotropy-dominated Kasner state which is the only other fixed point of the ultralocal state (see, Section 5 in Ref. [5] for an analytic proof). The spatially curved and anisotropic ultralocal state is then forced to evolve to the smooth FRW attractor solution.
3.3. Comparison to Robustness Studies of Inflation
- how does the range of initial conditions compare in numerical relativity studies of slow contraction and inflation, and
- how do the numerical relativity studies of slow contraction and inflation each address the fact that the problem has two fundamental length scales – corresponding to the physical volume and the Hubble volume – which evolve at exponentially different rates?
3.3.1. Initial conditions
3.3.2. Spatial and temporal resolution
- how to run the simulations sufficiently long such that smoothing is established for the 60 or more e-folds required to explain the observed homogeneity, isotropy and flatness of the universe, and
- how to implement a spatial resolution such that it is possible to track smoothing over both the super-Hubble patch and a single Hubble volume?
4. Future Directions
Funding
Acknowledgments
Conflicts of Interest
References
- Turner, M.S. Λ CDM: Much more than we expected, but now less than what we want. Found. Phys. 2018, 48, 1261–1278. [Google Scholar] [CrossRef]
- Komatsu, E.; Dunkley, J.; Nolta, M.R.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Limon, M.; Page, L. Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation. Astrophys. J. Suppl. 2009, 180, 330–376. [Google Scholar] [CrossRef] [Green Version]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Cook, W.G.; Glushchenko, I.A.; Ijjas, A.; Pretorius, F.; Steinhardt, P.J. Supersmoothing through slow contraction. Phys. Lett. B 2020, 808, 135690. [Google Scholar] [CrossRef]
- Ijjas, A.; Cook, W.G.; Pretorius, F.; Steinhardt, P.J.; Davies, E.Y. Robustness of slow contraction to cosmic initial conditions. J. Cosmol. Astropart. Phys. 2020, 2020, 030. [Google Scholar] [CrossRef]
- Ijjas, A.; Sullivan, A.P.; Pretorius, F.; Steinhardt, P.J.; Cook, W.G. Ultralocality and slow contraction. J. Cosmol. Astropart. Phys. 2021, 2021, 013. [Google Scholar] [CrossRef]
- Ijjas, A.; Pretorius, F.; Steinhardt, P.J.; Sullivan, A.P. The effects of multiple modes and reduced symmetry on the rapidity and robustness of slow contraction. Phys. Lett. B 2021, 820, 136490. [Google Scholar] [CrossRef]
- Ijjas, A.; Pretorius, F.; Steinhardt, P.J.; Garfinkle, D. Dynamical attractors in contracting spacetimes dominated by kinetically coupled scalar fields. J. Cosmol. Astropart. Phys. 2021, 030. [Google Scholar] [CrossRef]
- East, W.E.; Kleban, M.; Linde, A.; Senatore, L. Beginning inflation in an inhomogeneous universe. J. Cosmol. Astropart. Phys. 2016, 1609, 010. [Google Scholar] [CrossRef] [Green Version]
- Clough, K.; Lim, E.A.; DiNunno, B.S.; Fischler, W.; Flauger, R.; Paban, S. Robustness of inflation to inhomogeneous initial conditions. J. Cosmol. Astropart. Phys. 2017, 1709, 025. [Google Scholar] [CrossRef] [Green Version]
- Clough, K.; Flauger, R.; Lim, E.A. Robustness of inflation to large tensor perturbations. J. Cosmol. Astropart. Phys. 2018, 2018, 065. [Google Scholar] [CrossRef] [Green Version]
- Aurrekoetxea, J.C.; Clough, K.; Flauger, R.; Lim, E.A. The effects of potential shape on inhomogeneous inflation. J. Cosmol. Astropart. Phys. 2020, 2020, 030. [Google Scholar] [CrossRef]
- Joana, C.; Clesse, S. Inhomogeneous preinflation across Hubble scales in full general relativity. Phys. Rev. D 2021, 103, 083501. [Google Scholar] [CrossRef]
- Baumgarte, T.W.; Shapiro, S.L. Numerical Relativity: Starting from Scratch. Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Geroch, R. Gauge, diffeomorphisms, initial-value formulation, etc. In The Einstein equations and the large scale behavior of gravitational fields; Chruściel, P.T., Friedrich, H., Eds.; Birkhäuser Verlag: Basel, Switzerland, 2004; pp. 441–477. [Google Scholar] [CrossRef]
- Bardeen, J.M. Gauge invariant cosmological perturbations. Phys. Rev. 1980, D22, 1882–1905. [Google Scholar] [CrossRef]
- Ijjas, A.; Pretorius, F.; Steinhardt, P.J. Stability and the gauge problem in non-perturbative cosmology. J. Cosmol. Astropart. Phys. 2019, 2019, 015. [Google Scholar] [CrossRef] [Green Version]
- Foures-Bruhat, Y. Theoreme d’existence pour certains systemes derivees partielles non lineaires. Acta Math. 1952, 88, 141–225. [Google Scholar] [CrossRef]
- Pretorius, F. Numerical relativity using a generalized harmonic decomposition. Class. Quant. Grav. 2005, 22, 425–452. [Google Scholar] [CrossRef]
- Garfinkle, D.; Lim, W.C.; Pretorius, F.; Steinhardt, P.J. Evolution to a smooth universe in an ekpyrotic contracting phase with w > 1. Phys. Rev. 2008, D78, 083537. [Google Scholar] [CrossRef] [Green Version]
- Lehner, L. Numerical relativity: A Review. Class. Quant. Grav. 2001, 18, R25–R86. [Google Scholar] [CrossRef]
- Gundlach, C.; Martin-Garcia, J.M.; Calabrese, G.; Hinder, I. Constraint damping in the Z4 formulation and harmonic gauge. Class. Quant. Grav. 2005, 22, 3767–3774. [Google Scholar] [CrossRef]
- Brodbeck, O.; Frittelli, S.; Hubner, P.; Reula, O.A. Einstein’s equations with asymptotically stable constraint propagation. J. Math. Phys. 1999, 40, 909–923. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, F. Evolution of binary black hole spacetimes. Phys. Rev. Lett. 2005, 95, 121101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretorius, F. Simulation of binary black hole spacetimes with a harmonic evolution scheme. Class. Quant. Grav. 2006, 23, S529–S552. [Google Scholar] [CrossRef]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. 1981, D23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. 1982, B108, 389–393. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Khoury, J.; Ovrut, B.A.; Seiberg, N.; Steinhardt, P.J.; Turok, N. From big crunch to big bang. Phys. Rev. 2002, D65, 086007. [Google Scholar] [CrossRef] [Green Version]
- Erickson, J.K.; Wesley, D.H.; Steinhardt, P.J.; Turok, N. Kasner and mixmaster behavior in universes with equation of state w >= 1. Phys. Rev. 2004, D69, 063514. [Google Scholar]
- Ijjas, A.; Steinhardt, P.J. A new kind of cyclic universe. Phys. Lett. 2019, B795, 666–672. [Google Scholar] [CrossRef]
- Belinsky, V.A.; Khalatnikov, I.M.; Lifshitz, E.M. Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 1970, 19, 525–573. [Google Scholar] [CrossRef]
- Berger, B.; Garfinkle, D.; Isenberg, J.; Moncrief, V.; Weaver, M. The singularity in generic gravitational collapse is space-like, local, and oscillatory. Mod. Phys. Lett. A 1998, 13, 1565–1574. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.C.; Andersson, L.; Garfinkle, D.; Pretorius, F. Spikes in the mixmaster regime of G2 cosmologies. Phys. Rev. D 2009, 79, 123526. [Google Scholar] [CrossRef] [Green Version]
- Garfinkle, D.; Pretorius, F. Spike behavior in the approach to spacetime singularities. Phys. Rev. D 2020, 102, 124067. [Google Scholar] [CrossRef]
- York, J.W., Jr. Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Lett. 1971, 26, 1656–1658. [Google Scholar] [CrossRef]
- Nicolis, A.; Rattazzi, R.; Trincherini, E. The Galileon as a local modification of gravity. Phys. Rev. 2009, D79, 064036. [Google Scholar] [CrossRef] [Green Version]
- Creminelli, P.; Luty, M.A.; Nicolis, A.; Senatore, L. Starting the Universe: Stable violation of the null energy condition and non-standard cosmologies. J. High Energy Phys. 2006, 2006, 080. [Google Scholar] [CrossRef] [Green Version]
- Creminelli, P.; Pirtskhalava, D.; Santoni, L.; Trincherini, E. Stability of geodesically complete cosmologies. J. Cosmol. Astropart. Phys. 2016, 1611, 047. [Google Scholar] [CrossRef]
- Ageeva, Y.; Petrov, P.; Rubakov, V. Horndeski genesis: Consistency of classical theory. J. High Energy Phys. 2020, 12, 107. [Google Scholar] [CrossRef]
- Brandenberger, R.H. The Matter bounce alternative to inflationary cosmology. arXiv 2012, arXiv:1206.4196. [Google Scholar]
- Alexander, S.; Yunes, N. Chern-Simons modified general relativity. Phys. Rept. 2009, 480, 1–55. [Google Scholar] [CrossRef] [Green Version]
- Cayuso, J.; Ortiz, N.; Lehner, L. Fixing extensions to general relativity in the nonlinear regime. Phys. Rev. D 2017, 96, 084043. [Google Scholar] [CrossRef] [Green Version]
- Papallo, G.; Reall, H.S. On the local well-posedness of Lovelock and Horndeski theories. Phys. Rev. 2017, D96, 044019. [Google Scholar] [CrossRef] [Green Version]
- Allwright, G.; Lehner, L. Towards the nonlinear regime in extensions to GR: Assessing possible options. Class. Quant. Grav. 2019, 36, 084001. [Google Scholar] [CrossRef] [Green Version]
- Bernard, L.; Lehner, L.; Luna, R. Challenges to global solutions in Horndeski’s theory. Phys. Rev. D 2019, 100, 024011. [Google Scholar] [CrossRef] [Green Version]
- Kovács, A.D.; Reall, H.S. Well-posed formulation of Lovelock and Horndeski theories. Phys. Rev. D 2020, 101, 124003. [Google Scholar] [CrossRef]
- Cayuso, R.; Lehner, L. Nonlinear, noniterative treatment of EFT-motivated gravity. Phys. Rev. D 2020, 102, 084008. [Google Scholar] [CrossRef]
- Easson, D.A.; Sawicki, I.; Vikman, A. G-bounce. J. Cosmol. Astropart. Phys. 2011, 1111, 021. [Google Scholar] [CrossRef]
- Alexander, S.; Cai, Y.F.; Marciano, A. Fermi-bounce cosmology and the fermion curvaton mechanism. Phys. Lett. B 2015, 745, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Ijjas, A.; Steinhardt, P.J. Fully stable cosmological solutions with a non-singular classical bounce. Phys. Lett. 2017, B764, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Ijjas, A. Space-time slicing in Horndeski theories and its implications for non-singular bouncing solutions. J. Cosmol. Astropart. Phys. 2018, 1802, 007. [Google Scholar] [CrossRef] [Green Version]
- Graham, P.W.; Kaplan, D.E.; Rajendran, S. Born again universe. Phys. Rev. 2018, D97, 044003. [Google Scholar] [CrossRef] [Green Version]
- Kolevatov, R.; Mironov, S.; Sukhov, N.; Volkova, V. Cosmological bounce and Genesis beyond Horndeski. J. Cosmol. Astropart. Phys. 2017, 1708, 038. [Google Scholar] [CrossRef]
- Brandenberger, R.; Wang, Z. Ekpyrotic cosmology with a zero-shear S-brane. Phys. Rev. D 2020, 102, 023516. [Google Scholar] [CrossRef]
- Agrawal, P.; Gukov, S.; Obied, G.; Vafa, C. Topological gravity as the early phase of our universe. arXiv 2020, arXiv:2009.10077. [Google Scholar]
Ref. | Garfinkle et al. [20]; Cook et al. [4]; Ijjas et al. [5,6,7] |
fixed by the momentum constraint (12) | |
fixed by the Hamiltonian constraint (11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ijjas, A. Numerical Relativity as a New Tool for Fundamental Cosmology. Physics 2022, 4, 301-314. https://doi.org/10.3390/physics4010021
Ijjas A. Numerical Relativity as a New Tool for Fundamental Cosmology. Physics. 2022; 4(1):301-314. https://doi.org/10.3390/physics4010021
Chicago/Turabian StyleIjjas, Anna. 2022. "Numerical Relativity as a New Tool for Fundamental Cosmology" Physics 4, no. 1: 301-314. https://doi.org/10.3390/physics4010021
APA StyleIjjas, A. (2022). Numerical Relativity as a New Tool for Fundamental Cosmology. Physics, 4(1), 301-314. https://doi.org/10.3390/physics4010021