Jet Transport Coefficient at the Large Hadron Collider Energies in a Color String Percolation Approach †
Abstract
1. Introduction
2. Formulation and Methodology
3. Results and Discussion
3.1. Temperature
3.2. Energy Density
3.3. Jet Transport Coefficient
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bjorken, J.D. Energy Loss of Energetic Partons in Quark–Gluon Plasma: Possible Extinction of High pT Jets in Hadron-Hadron Collisions; Report FERMILAB-Pub-82-059-THY; Fermi National Accelerator Laboratory: Batavia, IL, USA, 1982. Available online: https://lss.fnal.gov/archive/preprint/fermilab-pub-82-059-t.shtml (accessed on 20 December 2021).
- dÉnterria, D. Jet quenching. In Landolt-Börnstein-Group. Elementary Particles, Nuclei and Atoms, 23: Relativistic Heavy Ion Physics; Stock, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Blaizot, J.P.; McLerran, L.D. Jets in Expanding quark–gluon plasmas. Phys. Rev. D 1986, 34, 2739. [Google Scholar] [CrossRef] [PubMed]
- Gyulassy, M.; Plumer, M. Jet quenching in dense matter. Phys. Lett. B 1990, 243, 432. [Google Scholar] [CrossRef]
- Wang, X.N.; Gyulassy, M. Gluon shadowing and jet quenching in A + A collisions at = 200 GeV. Phys. Rev. Lett. 1992, 68, 1480. [Google Scholar] [CrossRef]
- Baier, R.; Dokshitzer, Y.L.; Peigne, S.; Schiff, D. Induced gluon radiation in a QCD medium. Phys. Lett. B 1995, 345, 277. [Google Scholar] [CrossRef]
- Baier, R.; Dokshitzer, Y.L.; Mueller, A.H.; Peigne, S.; Schiff, D. Radiative energy loss and pT broadening of high-energy partons in nuclei. Nucl. Phys. B 1997, 484, 265. [Google Scholar] [CrossRef]
- Qin, G.Y.; Wang, X.N. Jet quenching in high-energy heavy-ion collisions. Int. J. Mod. Phys. E 2015, 24, 1530014. [Google Scholar] [CrossRef]
- Gyulassy, M.; Vitev, I.; Wang, X.-N.; Zhang, B.-W. Jet quenching and radiative energy loss in dense nuclear matter. In Quark-Gluon Plasma 3; Hwa, R.C., Wang, X.-N., Eds.; World Scientific: Singapore, 2004; pp. 123–191. [Google Scholar] [CrossRef]
- Adcox, K.; Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; AI-Jamel, A.; Alexander, J.; Amirikas, R.; Aoki, K.; et al. Suppression of hadrons with large transverse momentum in central Au+Au collisions at = 130 GeV. Phys. Rev. Lett. 2002, 88, 022301. [Google Scholar] [CrossRef]
- Adler, C.; Ahammed, Z.; Allgower, C.; Amonett, J.; Anderson, B.D.; Anderson, M.; Averichev, G.S.; Balewski, J.; Barannikova, O.; Barnby, L.S.; et al. Disappearance of back-to-back high pT hadron correlations in central Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 2003, 90, 082302. [Google Scholar] [CrossRef]
- Adcox, K.; Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; AI-Jamel, A.; Alexander, J.; Amirikas, R.; Aoki, K.; et al. Centrality dependence of the high pT charged hadron suppression in Au+Au collisions at = 130 GeV. Phys. Lett. B 2003, 561, 82. [Google Scholar] [CrossRef]
- Adcox, K.; Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; AI-Jamel, A.; Alexander, J.; Amirikas, R.; Aoki, K.; et al. Suppressed π0 production at large transverse momentum in central Au+ Au collisions at = 200 GeV. Phys. Rev. Lett. 2003, 91, 072301. [Google Scholar]
- Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; et al. Transverse momentum and collision energy dependence of high-pT hadron suppression in Au+Au collisions at ultrarelativistic energies. Phys. Rev. Lett. 2003, 91, 172302. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; et al. Evidence from d+Au measurements for final state suppression of high-pT hadrons in Au+Au collisions at RHIC. Phys. Rev. Lett. 2003, 91, 072304. [Google Scholar] [CrossRef] [PubMed]
- Roland, C. Charged hadron transverse momentum distributions in Au + Au collisions at = 200 GeV. Phys. Lett. B 2004, 578, 297. [Google Scholar]
- Arsene, I.; Bearden, I.G.; Beavis, D.; Besliu, C.; Budick, B.; Boggild, H.; Chasman, C.; Christensen, C.H.; Christiansen, P.; Cibor, J.; et al. Transverse momentum spectra in Au+Au and d+Au collisions at = 200 GeV and the pseudorapidity dependence of high-pT suppression. Phys. Rev. Lett. 2003, 91, 072305. [Google Scholar] [CrossRef] [PubMed]
- Adare, A.; Afanasiev, S.; Aidala, C.A.; Ajitanand, N.N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Al-Jamel, A.F.; Aoki, K.; Aphecetche, L.; et al. System size and energy dependence of jet-induced hadron pair correlation shapes in Cu+Cu and Au+Au collisions at = 200 and 62.4 GeV. Phys. Rev. Lett. 2007, 98, 232302. [Google Scholar] [CrossRef] [PubMed]
- Adcox, K.; Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; AI-Jamel, A.; Alexander, J.; Amirikas, R.; Aoki, K.; et al. Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 2005, 757, 184. [Google Scholar] [CrossRef]
- Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; et al. Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 2005, 757, 102. [Google Scholar] [CrossRef]
- Back, B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Becker, B.; Betts, R.R.; Bickley, A.A.; Bindel, R.; Budzanowski, A.; Busza, W.; et al. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 2005, 757, 28. [Google Scholar] [CrossRef]
- Arsene, I.; Bearden, I.G.; Beavis, D.; Besliu, C.; Budick, B.; Boggild, H.; Chasman, C.; Christensen, C.H.; Christiansen, P.; Cibor, J.; et al. Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1. [Google Scholar] [CrossRef]
- Adare, A.; Afanasiev, S.; Aidala, C.A.; Ajitanand, N.N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Al-Jamel, A.F.; Aoki, K.; Aphecetche, L.; et al. Quantitative constraints on the opacity of hot partonic matter from semi-inclusive single high transverse momentum pion suppression in Au+Au collisions at = 200 GeV. Phys. Rev. C 2008, 77, 064907. [Google Scholar] [CrossRef]
- Aamodt, K.; Wikne, J.; Mlynarz, J.; Lazzeroni, C.; Bruno, G.; Radomski, S.; Gheata, M.; Stefanek, G.; Piccotti, A.; Cuveland, J.; et al. Suppression of charged particlepProduction at large transverse momentum in central Pb-Pb collisions at = 2.76 TeV. Phys. Lett. B 2011, 696, 30. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; et al. Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at = 2.77 TeV with the ATLAS detector at the LHC. Phys. Rev. Lett. 2010, 105, 252303. [Google Scholar] [CrossRef] [PubMed]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al. Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV. Phys. Rev. C 2011, 84, 024906. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al. Dependence on pseudorapidity and centrality of charged hadron production in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV. J. High Energy Phys. 2011, 1108, 141. [Google Scholar] [CrossRef]
- Aamodt, K.; Wikne, J.; Mlynarz, J.; Lazzeroni, C.; Bruno, G.; Radomski, S.; Gheata, M.; Stefanek, G.; Piccotti, A.; Cuveland, J.; et al. Particle-yield modification in jetlike azimuthal dihadron correlations in Pb-Pb Collisions at = 2.76 TeV. Phys. Rev. Lett. 2012, 108, 092301. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al. Study of high-pT charged particle suppression in PbPb compared to pp collisions at = 2.76 TeV. Eur. Phys. J. C 2012, 72, 1945. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al. Jet momentum dependence of jet quenching in PbPb collisions at = 2.76 TeV. Phys. Lett. B 2012, 712, 176. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al. Measurement of jet fragmentation into charged particles in pp and PbPb collisions at = 2.76 TeV. J. High Energy Phys. 2012, 1210, 087. [Google Scholar]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al. Studies of jet quenching using isolated-photon+jet correlations in PbPb and pp collisions at = 2.76 TeV. Phys. Lett. B 2013, 718, 773. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; et al. Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead-lead collisions at = 2.76 TeV with the ATLAS detector. Phys. Lett. B 2013, 719, 220. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al. Evidence of b-jet quenching in PbPb collisions at = 2.76 TeV. Phys. Rev. Lett. 2014, 113, 132301. [Google Scholar] [CrossRef] [PubMed]
- CMS Collaboration. Modification of jet shapes in PbPb collisions at = 2.76 TeV. Phys. Lett. B 2014, 730, 243. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of jet fragmentation in PbPb and pp collisions at = 2.76 TeV. Phys. Rev. C 2014, 90, 024908. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; et al. Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at = 2.76 TeV with the ATLAS detector. Phys. Lett. B 2014, 739, 320. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; et al. Measurements of the nuclear modification factor for jets in Pb+Pb collisions at = 2.76 TeV with the ATLAS detector. Phys. Rev. Lett. 2015, 114, 072302. [Google Scholar] [CrossRef] [PubMed]
- Zakharov, B. Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD. JETP Lett. 1996, 63, 952. [Google Scholar] [CrossRef]
- Baier, R.; Dokshitzer, Y.L.; Mueller, A.H.; Peigne, S.; Schiff, D. Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma. Nucl. Phys. B 1997, 483, 291. [Google Scholar] [CrossRef]
- Gyulassy, M.; Levai, P.; Vitev, I. Jet quenching in thin quark gluon plasmas. 1. Formalism. Nucl. Phys. B 2000, 571, 197. [Google Scholar] [CrossRef]
- Gyulassy, M.; Levai, P.; Vitev, I. Non-Abelian energy loss at finite opacity. Phys. Rev. Lett. 2000, 85, 5535. [Google Scholar] [CrossRef]
- Gyulassy, M.; Levai, P.; Vitev, I. Reaction operator approach to nonAbelian energy loss. Nucl. Phys. B 2001, 594, 371. [Google Scholar] [CrossRef]
- Buzzatti, A.; Gyulassy, M. Jet flavor tomography of quark gluon plasmas at RHIC and LHC. Phys. Rev. Lett. 2012, 108, 022301. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.F.; Wang, X.N. Multiple scattering, parton energy loss and modified fragmentation functions in deeply inelastic e A scattering. Phys. Rev. Lett. 2000, 85, 3591. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-N.; Guo, X.-F. Multiple parton scattering in nuclei: Parton energy loss. Nucl. Phys. A 2001, 696, 788. [Google Scholar] [CrossRef]
- Chen, X.F.; Hirano, T.; Wang, E.; Wang, X.N.; Zhang, H. Suppression of high pT hadrons in Pb+Pb Collisions at LHC. Phys. Rev. C 2011, 84, 034902. [Google Scholar] [CrossRef]
- Majumder, A. Hard collinear gluon radiation and multiple scattering in a medium. Phys. Rev. D 2012, 85, 014023. [Google Scholar] [CrossRef]
- Vitev, I.; Zhang, B.W. Jet tomography of high-energy nucleus-nucleus collisions at next-to-leading order. Phys. Rev. Lett. 2010, 104, 132001. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, U.A. Gluon radiation off hard quarks in a nuclear environment: Opacity expansion. Nucl. Phys. B 2000, 588, 303. [Google Scholar] [CrossRef]
- Wiedemann, U.A. Jet quenching versus jet enhancement: A quantitative study of the BDMPS-Z gluon radiation spectrum. Nucl. Phys. 2001, 690, 731. [Google Scholar] [CrossRef]
- Arnold, P.B.; Moore, G.D.; Yaffe, L.G. Photon emission from ultrarelativistic plasmas. J. High Energy Phys. 2001, 11, 057. [Google Scholar] [CrossRef]
- Arnold, P.B.; Moore, G.D.; Yaffe, L.G. Photon and gluon emission in relativistic plasmas. J. High Energy Phys. 2002, 6, 030. [Google Scholar] [CrossRef]
- Schenke, B.; Gale, C.; Jeon, S. MARTINI: An Event generator for relativistic heavy-ion collisions. Phys. Rev. C 2009, 80, 054913. [Google Scholar] [CrossRef]
- Fochler, O.; Xu, Z.; Greiner, C. Energy loss in a partonic transport model including bremsstrahlung processes. Phys. Rev. C 2010, 82, 024907. [Google Scholar] [CrossRef]
- He, Y.; Luo, T.; Wang, X.N.; Zhu, Y. Linear Boltzmann transport for jet propagation in the quark–gluon plasma: Elastic processes and medium recoil. Phys. Rev. C 2015, 91, 054908, Erratum in Phys. Rev. C 2018, 97, 019902. [Google Scholar] [CrossRef]
- Casalderrey-Solana, J.; Wang, X.N. Energy dependence of jet transport parameter and parton saturation in Quark–Gluon plasma. Phys. Rev. C 2008, 77, 024902. [Google Scholar] [CrossRef]
- Burke, K.M.; Buzzatti, A.; Chang, N.; Gale, C.; Gyulassy, M.; Heinz, U.; Jeon, S.; Majumder, A.; Muller, B.; Qin, G.Y.; et al. Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions. Phys. Rev. C 2014, 90, 014909. [Google Scholar] [CrossRef]
- Armesto, N.; Braun, M.A.; Ferreiro, E.G.; Pajares, C. Percolation approach to quark-gluon plasma and J/ψ suppression. Phys. Rev. Lett. 1996, 77, 3736. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.A.; Pajares, C. Implications of percolation of color strings on multiplicities, correlations and the transverse momentum. Eur. Phys. J. C 2000, 16, 349. [Google Scholar] [CrossRef]
- Braun, M.A.; Pajares, C. Transverse momentum distributions and their forward backward correlations in the percolating color string approach. Phys. Rev. Lett. 2000, 85, 4864. [Google Scholar] [CrossRef]
- Braun, M.A.; del Moral, F.; Pajares, C. Percolation of strings and the first RHIC data on multiplicity and transverse momentum distributions. Phys. Rev. C 2002, 65, 024907. [Google Scholar] [CrossRef]
- Dias de Deus, J.; Pajares, C. Percolation of color sources and critical temperature. Phys. Lett. B 2006, 642, 455. [Google Scholar] [CrossRef]
- Braun, M.A.; Dias de Deus, J.; Hirsch, A.S.; Pajares, C.; Scharenberg, R.P.; Srivastava, B.K. De-confinement and clustering of color sources in nuclear collisions. Phys. Rep. 2015, 599, 1. [Google Scholar] [CrossRef]
- de Deus, J.D.; Pajares, C. String percolation and the glasma. Phys. Lett. B 2011, 695, 211. [Google Scholar] [CrossRef]
- Braun, M.A.; del Moral, F.; Pajares, C. Centrality dependence of the multiplicity and transverse momentum distributions at RHIC and LHC and the percolation of strings. Nucl. Phys. A 2003, 715, 791. [Google Scholar] [CrossRef][Green Version]
- Schwinger, J. Gauge invariance and mass. II. Phys. Rev. 1962, 128, 2425. [Google Scholar] [CrossRef]
- Scharenberg, R.P.; Srivastava, B.K.; Hirsch, A.S. Percolation of color sources and the determination of the equation of state of the quark–gluon plasma (QGP) produced in central Au-Au collisions at = 200 GeV. Eur. Phys. J. C 2011, 71, 1510. [Google Scholar] [CrossRef]
- Isichenko, M.B. Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 1992, 64, 961. [Google Scholar] [CrossRef]
- Satz, H. Color deconfinement in nuclear collisions. Rep. Prog. Phys. 2000, 63, 1511. [Google Scholar] [CrossRef]
- Mishra, A.N.; Caulte, E.; Paić, G.; Pajares, C.; Scharenberg, R.P.; Srivastava, B.K. ALICE data in the framework of the color string percolation model. PoS 2019. [Google Scholar] [CrossRef][Green Version]
- Cunqueiro, L.; Dias de Deus, J.; Pajares, C. Nuclear like effects in proton-proton collisions at high energy. Eur. Phys. J. C 2010, 65, 423. [Google Scholar] [CrossRef]
- Andres, C.; Moscoso, A.; Pajares, C. Onset of the ridge structure in AA, pA, and pp collisions. Phys. Rev. C 2014, 90, 054902. [Google Scholar] [CrossRef]
- Scharenberg, R.P. The QGP equation of state by measuring the color suppression factor at RHIC and LHC energies. PoS 2013. [Google Scholar] [CrossRef]
- Dias de Deus, J.; Hirsch, A.S.; Pajares, C.; Scharenberg, R.P.; Srivastava, B.K. Clustering of color sources and the shear viscosity of the QGP in heavy ion collisions at RHIC and LHC energies. Eur. Phys. J. C 2012, 72, 2123. [Google Scholar] [CrossRef]
- Srivastava, B.K. Percolation approach to initial stage effects in high energy collisions. Nucl. Phys. A 2014, 926, 142. [Google Scholar] [CrossRef]
- Dias de Deus, J.; Hirsch, A.S.; Pajares, C.; Scharenberg, R.P.; Srivastava, B.K. Transport coefficient to trace anomaly in the clustering of color sources approach. Phys. Rev. C 2016, 93, 024915. [Google Scholar] [CrossRef]
- Sahoo, P.; De, S.; Tiwari, S.K.; Sahoo, R. Energy and centrality dependent study of deconfinement phase transition in a color string percolation approach at RHIC energies. Eur. Phys. J. A 2018, 54, 136. [Google Scholar] [CrossRef]
- Sahoo, P.; Tiwari, S.K.; De, S.; Sahoo, R.; Scharenberg, R.P.; Srivastava, B.K. Thermodynamic and transport properties in Au + Au collisions at RHIC energies from the clustering of color strings. Mod. Phys. Lett. A 2019, 34, 1950034. [Google Scholar] [CrossRef]
- Sahoo, P.; Sahoo, R.; Tiwari, S.K. Wiedemann-Franz law for hot QCD matter in a color string percolation scenario. Phys. Rev. D 2019, 100, 051503. [Google Scholar] [CrossRef]
- Sahoo, P.; Tiwari, S.K.; Sahoo, R. Electrical conductivity of hot and dense QCD matter created in heavy-ion collisions: A color string percolation approach. Phys. Rev. D 2018, 98, 054005. [Google Scholar] [CrossRef]
- Sahu, D.; Tripathy, S.; Sahoo, R.; Tiwari, S.K. Formation of a perfect fluid in pp p-Pb, Xe-Xe and Pb-Pb collisions at the Large Hadron Collider energies. arXiv 2001, arXiv:2001.01252. [Google Scholar]
- Sahu, D.; Sahoo, R. Thermodynamic and transport properties of matter formed in pp, p-Pb, Xe-Xe and Pb-Pb collisions at the Large Hadron Collider using color string percolation model. J. Phys. G 2021, 48, 125104. [Google Scholar] [CrossRef]
- Mishra, A.N.; Paić, G.; Pajares, C.; Scharenberg, R.P.; Srivastava, B.K. Deconfinement and degrees of freedom in pp and A-A collisions at LHC energies. Eur. Phys. J. A 2021, 57, 245. [Google Scholar] [CrossRef]
- McLerran, L.; Venugopalan, R. Computing quark and gluon distribution functions for very large nuclei. Phys. Rev. D 1994, 49, 2233. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Adamová, D.; Adhya, S.P.; Adler, A.; Adolfsson, J.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; et al. Charged-particle production as a function of multiplicity and transverse spherocity in pp collisions at = 5.02 and 13 TeV. Eur. Phys. J. C 2019, 79, 857. [Google Scholar] [CrossRef]
- Acharya, S.; Adamová, D.; Adhya, S.P.; Adler, A.; Adolfsson, J.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; et al. Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC. J. High Energy Phys. 2018, 11, 013. [Google Scholar]
- Acharya, S.; Acosta, F.T.; Adamová, D.; Adolfsson, J.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S.U.; et al. Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at = 5.44 TeV. Phys. Lett. B 2019, 788, 166. [Google Scholar] [CrossRef]
- McLerran, L.; Praszalowicz, M.; Schenke, B. Transverse momentum of protons, pions and Kaons in high multiplicity pp and pA collisions: Evidence for the color glass condensate? Nucl. Phys. A 2013, 916, 210. [Google Scholar] [CrossRef]
- Loizides, C. Glauber modeling of high-energy nuclear collisions at the subnucleon level. Phys. Rev. C 2016, 94, 024914. [Google Scholar] [CrossRef]
- Becattini, F.; Castorina, P.; Milov, A.; Satz, H. A Comparative analysis of statistical hadron production. Eur. Phys. J. C 2010, 66, 377. [Google Scholar] [CrossRef]
- Acharya, S.; Acosta, F.T.; Adamová, D.; Adolfsson, J.; Aggarwal, M.M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S.U.; et al. Direct photon production in Pb-Pb collisions at = 2.76 TeV. Phys. Lett. B 2016, 754, 235. [Google Scholar]
- Bjorken, J.D. Highly relativistic nucleus-nucleus collisions: The central rapidity region. Phys. Rev. D 1983, 27, 140. [Google Scholar] [CrossRef]
- Wong, C.Y. Introduction to High Energy Heavy Ion Collisions; World Scientific: Singapore, 1994. [Google Scholar] [CrossRef]
- Baier, R.; Mehtar-Tani, Y. Jet quenching and broadening: The Transport coefficient q-hat in an anisotropic plasma. Phys. Rev. C 2008, 78, 064906. [Google Scholar] [CrossRef]
- Liu, H.; Rajagopal, K.; Wiedemann, U.A. Calculating the jet quenching parameter from AdS/CFT. Phys. Rev. Lett. 2006, 97, 182301. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Muller, B.; Wang, X.N. Small shear viscosity of a quark–gluon plasma implies strong jet quenching. Phys. Rev. Lett. 2007, 99, 192301. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Shear viscosity of nuclear matter. Nucl. Sci. Tech. 2013, 24, 50514. [Google Scholar]
- Baier, R. Jet quenching. Nucl. Phys. A 2003, 715, 209. [Google Scholar] [CrossRef]
- Su, N. A brief overview of hard-thermal-loop perturbation theory. Commun. Theor. Phys. 2012, 57, 409. [Google Scholar] [CrossRef][Green Version]
- Baier, R.; Dokshitzer, Y.L.; Mueller, A.H.; Peigne, S.; Peigne, S.; Schiff, D. The Landau-Pomeranchuk-Migdal effect in QED. Nucl. Phys. B 1996, 478, 577. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, A.N.; Sahu, D.; Sahoo, R. Jet Transport Coefficient at the Large Hadron Collider Energies in a Color String Percolation Approach. Physics 2022, 4, 315-328. https://doi.org/10.3390/physics4010022
Mishra AN, Sahu D, Sahoo R. Jet Transport Coefficient at the Large Hadron Collider Energies in a Color String Percolation Approach. Physics. 2022; 4(1):315-328. https://doi.org/10.3390/physics4010022
Chicago/Turabian StyleMishra, Aditya Nath, Dushmanta Sahu, and Raghunath Sahoo. 2022. "Jet Transport Coefficient at the Large Hadron Collider Energies in a Color String Percolation Approach" Physics 4, no. 1: 315-328. https://doi.org/10.3390/physics4010022
APA StyleMishra, A. N., Sahu, D., & Sahoo, R. (2022). Jet Transport Coefficient at the Large Hadron Collider Energies in a Color String Percolation Approach. Physics, 4(1), 315-328. https://doi.org/10.3390/physics4010022