Emerging Concepts in Nuclear Structure Based on the Shell Model
Abstract
:1. Introduction
2. Shell Evolution Due to Monopole Interaction
2.1. Mayer–Jensen’s Shell Model and Observed Magic Numbers
2.2. Monopole Interaction
2.3. Central, Two-Body Spin-Orbit and Tensor Parts of the NN Interaction
2.4. Monopole Interaction of the Central Force
2.5. Monopole Interaction of the Tensor Force
2.6. Monopole-Interaction Effects from the Central and Tensor Forces Combined
2.7. N = 34 New Magic Number as a Consequence of the Shell Evolution
2.8. Monopole Interaction of the Two-Body Spin-Orbit Force
2.9. Monopole Interaction from the Three-Nucleon Force
2.10. Short Summary of This Section
3. Type-II Shell Evolution and Shape Coexistence
3.1. Type-II Shell Evolution
3.2. A Doubly-Closed Nucleus 68Ni
3.3. Coexistence between Spherical and Deformed Shapes
3.4. T-Plot Analysis
3.5. Short Summary of This Section
4. Self-Organization and Collective Bands in Heavy Nuclei
4.1. Shape Coexistence in 154Sm
4.2. Collective Bands and Vibration in 166Er
4.3. A Historical Touch and a Short Summary of This Section
5. Dripline Mechanism
5.1. Traditional View
5.2. Monopole–Quadrupole Interplay for the Driplines
5.3. Stability of Spherical Isotopes and the Monopole-Quadrupole Interplay
5.4. A Short Summary of This Section
6. Prospect
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Note on the Relation between the Present ESPE and the Baranger’s ESPE
Appendix B. Self-Organization and Its Extension to Other “Many-Body” Systems
References
- Goeppert Mayer, M. On closed shells in nuclei. II. Phys. Rev. 1949, 75, 1969. [Google Scholar] [CrossRef]
- Haxel, O.; Jensen, J.H.D.; Suess, H.E. On the “magic numbers” in nuclear structure. Phys. Rev. 1949, 75, 1766. [Google Scholar] [CrossRef]
- Talmi, I. Effective Interactions and Coupling Schemes in Nuclei. Rev. Mod. Phys. 1962, 34, 704–722. [Google Scholar] [CrossRef]
- Caurier, E.; Martínez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A.P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 2005, 77, 427–488. [Google Scholar] [CrossRef] [Green Version]
- Gade, A.; Glasmacher, T. In-beam nuclear spectroscopy of bound states with fast exotic ion beams. Prog. Part. Nucl. Phys. 2008, 60, 161–224. [Google Scholar] [CrossRef]
- Sorlin, O.; Porquet, M.-G. Nuclear magic numbers: New features far from stability. Prog. Part. Nucl. Phys. 2008, 61, 602–673. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Sakurai, H.; Watanabe, H. Exotic nuclei explored at in-flight separators. Prog. Part. Nucl. Phys. 2017, 97, 53–122. [Google Scholar] [CrossRef]
- Rainwater, J. Nuclear energy level argument for a spheroidal nuclear model. Phys. Rev. 1950, 79, 432. [Google Scholar] [CrossRef]
- Bohr, A. The coupling of nuclear surface oscillations to the motion of individual nucleons. Dan. Mat. Fys. Medd. 1952, 26, 14. [Google Scholar]
- Bohr, A. Rotational motion in nuclei. In Nobel Lectures, Physics 1971–1980; Lundqvist, S., Ed.; World Scientific: Singapore, 1992; pp. 213–232. Available online: https://www.nobelprize.org/prizes/physics/1975/bohr/facts/ (accessed on 1 February 2022).
- Bohr, A.; Mottelson, B.R. Collective and individual-particle aspects of nuclear structure. Dan. Mat. Fys. Medd. 1953, 27, 16. [Google Scholar]
- Bohr, A.; Mottelson, B.R. Nuclear Structure I; Benjamin: New York, NY, USA, 1969. [Google Scholar]
- Bohr, A.; Mottelson, B.R. Nuclear Structure II; Benjamin: New York, NY, USA, 1975. [Google Scholar]
- Schäfer, T. Fermi liquid theory: A brief survey in memory of Gerald E. Brown, Nucl. Phys. A 2014, 928, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Gade, A.; Sorlin, O.; Suzuki, T.; Utsuno, Y. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 2020, 92, 015002. [Google Scholar] [CrossRef] [Green Version]
- Ragnarsson, I.; Nilsson, S. Shapes and Shells in Nuclear Structure; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Poves, A.; Zuker, A. Theoretical spectroscopy and the fp shell. Phys. Rep. 1981, 70, 235–314. [Google Scholar] [CrossRef]
- Bansal, R.K.; French, J.B. Even-parity-hole states in f7/2-shell nuclei. Phys. Lett. 1964, 11, 145–148. [Google Scholar] [CrossRef]
- Baranger, M. A definition of the single-nucleon potential. Nucl. Phys. A 1970, 149, 225. [Google Scholar] [CrossRef]
- Storm, M.; Watt, A.; Whitehead, R. Crossing of single-particle energy levels resulting from neutron excess in the sd shell. J. Phys. G 1983, 9, L165–L168. [Google Scholar] [CrossRef]
- Grawe, H. Shell model from a practitioner’s point of view. In The Euroschool Lectures on Physics with Exotic Beams; Al-Khalili, J., Roeckl, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume I, pp. 33–75. [Google Scholar]
- Federman, P.; Pittel, S. Towards a unified microscopic description of nuclear deformation. Phys. Lett. B 1977, 69, 385–388. [Google Scholar] [CrossRef]
- Otsuka, T.; Suzuki, T.; Fujimoto, R.; Grawe, H.; Akaishi, Y. Evolution of the nuclear shells due to the tensor force. Phys. Rev. Lett. 2005, 95, 232502. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Tsunoda, Y. The role of shell evolution in shape coexistence. J. Phys. G 2016, 43, 024009. [Google Scholar] [CrossRef]
- Otsuka, T.; Suzuki, T.; Honma, M.; Utsuno, Y.; Tsunoda, N.; Tsukiyama, K.; Hjorth-Jensen, M. Novel features of nuclear forces and shell evolution in exotic nuclei. Phys. Rev. Lett. 2010, 104, 012501. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A.; Wildenthal, B.H. Status of the nuclear shell model. Annu. Rev. Nucl. Part. Sci. 1988, 38, 29–66. [Google Scholar] [CrossRef]
- Honma, M.; Otsuka, T.; Brown, B.A.; Mizusaki, T. Effective interaction for pf-shell nuclei. Phys. Rev. C 2004, 65, 061301. [Google Scholar] [CrossRef] [Green Version]
- Kuo, T.T.S.; Brown, G.E. Structure of finite nuclei and the free nucleon-nucleon interaction An application to 18O and 18F. Nucl. Phys. 1966, 85, 40. [Google Scholar] [CrossRef]
- Hjorth-Jensen, M.; Kuo, T.T.S.; Osnes, E. Realistic effective interactions for nuclear systems. Phys. Rep. 1995, 261, 125–270. [Google Scholar] [CrossRef]
- Brown, B.A. Double-octupole states in 208Pb. Phys. Rev. Lett. 2000, 85, 5300. [Google Scholar] [CrossRef]
- Brown, B.A.; Stone, N.J.; Stone, J.R.; Towner, I.S.; Hjorth-Jensen, M. Magnetic moments of the 21+ states around 132Sn. Phys. Rev. C 2005, 71, 044317. [Google Scholar] [CrossRef] [Green Version]
- Lenzi, S.M.; Nowacki, F.; Poves, A.; Sieja, K. Island of inversion around 64Cr. Phys. Rev. C 2010, 82, 054301. [Google Scholar] [CrossRef]
- Cohen, S.; Kurath, D. Effective interactions for the 1p shell. Nucl. Phys. 1965, 73, 1. [Google Scholar] [CrossRef]
- Bertsch, G.; Borysowicz, J.; McManus, H.; Love, W.G. Interactions for inelstic scattering derived from realistic potentials. Nucl. Phys. A 1977, 284, 399–419. [Google Scholar] [CrossRef]
- Osterfeld, F. Nuclear spin and isospin excitations. Rev. Mod. Phys. 1992, 64, 491–557. [Google Scholar] [CrossRef]
- Bäckman, S.-O.; Brown, G.E.; Niskanen, J.A. The nucleon-nucleon interaction and the nuclear many-body problem. Phys. Rep. 1985, 124, 1–68. [Google Scholar] [CrossRef]
- Schiffer, J.P.; Freeman, S.J.; Caggiano, J.A.; Deibel, C.; Heinz, A.; Jiang, C.L. Is the nuclear spin-orbit interaction changing with neutron excess? Phys. Rev. Lett. 2004, 92, 162501. [Google Scholar] [CrossRef]
- Sahin, E.; Garrote, F.B.; Tsunoda, Y.; Otsuka, T.; De Angelis, G.; Görgen, A. Shell evolution towards 78Ni: Low-lying states in 77Cu. Phys. Rev. Lett. 2017, 118, 242502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichikawa, Y.; Nishibata, H.; Tsunoda, Y.; Takamine, A.; Imamura, K.; Fujita, T. Interplay between nuclear shell evolution and shape deformation revealed by the magnetic moment of 75Cu. Nat. Phys. 2019, 15, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Liddick, S.N.; Grzywacz, R.; Mazzocchi, C.; Page, R.D.; Rykaczewski, K.P.; Batchelder, J.C. Discovery of 109Xe 105Te: Superallowed decay doubly magic 100Sn. Phys. Rev. Lett. 2006, 97, 082501. [Google Scholar] [CrossRef]
- Seweryniak, D.; Carpenter, M.P.; Gros, S.; Hecht, A.A.; Hoteling, N.; Janssens, R.V.F. Single-neutron states 101Sn. Phys. Rev. Lett. 2007, 99, 022504. [Google Scholar] [CrossRef] [PubMed]
- Evaluated Nuclear Structure Data File. Available online: http://www.nndc.bnl.gov/ensdf/ (accessed on 1 February 2022).
- Smirnova, N.A.; Bally, B.; Heyde, K.; Nowacki, F.; Sieja, K. Shell evolution and nuclear forces. Phys. Lett. B 2010, 686, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Huck, A.; Klotz, G.; Knipper, A.; Miehé, C.; Richard-Serre, C.; Walter, G.; Poves, A.; Ravn, H.L.; Marguier, G. Beta decay of the new isotopes 52K, 52Ca, and 52Sc; a test of the shell model far from stability. Phys. Rev. C 1985, 31, 2226. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Fujimoto, R.; Utsuno, Y.; Brown, B.A.; Honma, M.; Mizusaki, T. Magic numbers in exotic nuclei and spin-isospin properties of the NN interaction. Phys. Rev. Lett. 2001, 87, 082502. [Google Scholar] [CrossRef] [Green Version]
- Janssens, R.V.F. Elusive magic numbers. Nature 2005, 435, 897–898. [Google Scholar] [CrossRef]
- Steppenbeck, D.; Takeuchi, S.; Aoi, N.; Doornenbal, P.; Matsushita, M.; Wang, H. Evidence for a new nuclear ‘magic number’from the level structure of 54Ca. Nature 2013, 502, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Michimasa, S.; Kobayashi, M.; Kiyokawa, Y.; Ota, S.; Ahn, D.S.; Baba, H. Magic nature of neutrons in 54Ca: First mass measurements of 55–57Ca. Phys. Rev. Lett. 2018, 121, 022506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Lee, J.; Doornenbal, P.; Obertelli, A.; Barbieri, C.; Chazono, Y. Quasifree neutron knockout from 54Ca corroborates arising N = 34 neutron magic number. Phys. Rev. Lett. 2019, 123, 142501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, B.P.; Hoffman, C.R.; Macchiavelli, A.O. Effect of Weak binding on the apparent spin-orbit splitting in nuclei. Phys. Rev. Lett. 2017, 119, 182502. [Google Scholar] [CrossRef] [Green Version]
- Uozumi, Y.; Kikuzawa, N.; Sakae, T.; Matoba, M.; Kinoshita, K.; Sajima, S. Shell-Model Study of 40Ca with the 56-MeV reaction. Phys. Rev. C 1994, 50, 263–274. [Google Scholar] [CrossRef]
- Burgunder, G.; Sorlin, O.; Nowacki, F.; Giron, S.; Hammache, F.; Moukaddam, M. Experimental study of the two-Body spin-orbit force in nuclei. Phys. Rev. Lett. 2014, 112, 042502. [Google Scholar] [CrossRef] [Green Version]
- Hammer, H.-W.; Nogga, A.; Schwenk, A. Colloquium: Three-body forces: Cold atoms nuclei. Rev. Mod. Phys. 2013, 85, 197. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Suzuki, T.; Holt, J.D.; Schwenk, A.; Akaishi, Y. Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 2010, 105, 032501. [Google Scholar] [CrossRef] [Green Version]
- Fujita, J.; Miyazawa, H. Pion theory of three-body forces. Prog. Theor. Phys. 1957, 17, 360. [Google Scholar] [CrossRef]
- Carlson, J.; Golfi, S.; Pederiva, F.; Pieper, S.C.; Schiavilla, R.; Schmidt, K.E.; Wiringa, R.B. Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 2015, 87, 1067–1118. [Google Scholar] [CrossRef]
- Tsunoda, N.; Otsuka, T.; Takayanagi, K.; Shimizu, N.; Suzuki, T.; Utsuno, Y.; Yoshida, S.; Ueno, H. The impact of nuclear shape on the emergence of the neutron dripline. Nature 2020, 587, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, Y.; Otsuka, T.; Shimizu, N.; Honma, M.; Utsuno, Y. Novel shape evolution in exotic Ni isotopes and configuration-dependent shell structure. Phys. Rev. C 2014, 89, 031301(R). [Google Scholar] [CrossRef] [Green Version]
- Honma, M.; Mizusaki, T.; Otsuka, T. Diagonalization of Hamiltonians for many-body systems by auxiliary field quantum Monte Carlo technique. Phys. Rev. Lett. 1995, 75, 1284. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, T.; Mizusaki, T.; Honma, M. Structure of the N = Z = 28 closed shell studied by Monte Carlo shell model calculation. Phys. Rev. Lett. 1998, 81, 1588–1591. [Google Scholar] [CrossRef]
- Otsuka, T.; Honma, M.; Mizusaki, T.; Shimizu, N.; Utsuno, Y. Monte Carlo shell model for atomic nuclei. Prog. Part. Nucl. Phys. 2001, 47, 319–400. [Google Scholar] [CrossRef]
- Shimizu, N.; Abe, T.; Tsunoda, Y.; Utsuno, Y.; Yoshida, T.; Mizusaki, T.; Honma, M.; Otsuka, T. New-generation Monte Carlo shell model for the K computer era. Prog. Theor. Exp. Phys. 2012, 2012, 01A205. [Google Scholar] [CrossRef] [Green Version]
- Heyde, K.; Wood, J.L. Shape coexistence in atomic nuclei. Rev. Mod. Phys. 2011, 83, 1467–1521. [Google Scholar] [CrossRef]
- Leoni, S.; Fornal, B.; Mărginean, N.; Sferrazza, M.; Tsunoda, Y.; Otsuka, T. Multifaceted quadruplet of low-lying spin-zero states in 66Ni: Emergence of shape isomerism in light nuclei. Phys. Rev. Lett. 2017, 118, 162502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Togashi, T.; Tsunoda, Y.; Otsuka, T.; Shimizu, N. Quantum Phase Transition in the Shape of Zr isotopes. Phys. Rev. Lett. 2016, 117, 172502. [Google Scholar] [CrossRef]
- Kremer, C.; Aslanidou, S.; Bassauer, S.; Hilcker, M.; Krugmann, A.; von Neumann-Cosel, P. First measurement of collectivity of coexisting shapes based on type II shell evolution: The case of case 96Zr. Phys. Rev. Lett. 2016, 117, 172503. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Korten, W.; Hagen, T.W.; Görgen, A.; Grente, L.; Salsac, M.D. Evidence for coexisting shapes through lifetime measurements in 98Zr. Phys. Rev. Lett. 2016, 121, 192501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Togashi, T.; Tsunoda, Y.; Otsuka, T.; Shimizu, N.; Honma, M. Novel Shape evolution in Sn isotopes from magic numbers 50 to 82. Phys. Rev. Lett. 2018, 121, 062501. [Google Scholar] [CrossRef] [Green Version]
- Marsh, B.A.; Goodacre, T.; Sels, S.; Tsunoda, Y.; Andel, B.; Andreyev, A.N. Characterization of the shape-staggering effect in mercury nuclei. Nat. Phys. 2018, 14, 1163–1167. [Google Scholar] [CrossRef] [Green Version]
- Mărginean, S.; Little, D.; Yusuke, T.; Leoni, S.; Janssens, R.V.F.; Fornal, B.; Takaharu, O.; Michelagnoli, C.; Stan, L.; Luigi, C.F.C.; et al. Shape coexistence at zero spin in 64Ni driven by the monopole tensor interaction. Phys. Rev. Lett. 2020, 125, 102502. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, T.; Tsunoda, Y.; Abe, T.; Shimizu, N.; Van Duppen, P. Underlying Structure of collective bands and self-organization in quantum systems. Phys. Rev. Lett. 2019, 123, 222502. [Google Scholar] [CrossRef] [Green Version]
- Utsuno, Y.; Shimizu, N.; Otsuka, T.; Yoshida, T.; Tsunoda, Y. Nature of Isomerism in exotic Sulfur isotopes. Phys. Rev. Lett. 2015, 114, 032501. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Shimizu, N.; Tsunoda, Y. Moments and radii of exotic Na and Mg isotopes. Phys. Rev. C 2022, 105, 014319. [Google Scholar] [CrossRef]
- Robeldo, L.M.; Rodríguez-Guzmán, R.R.; Sarriguren, P. Evolution of nuclear shapes in medium mass isotopes from a microscopic perspective. Phys. Rev. C 2008, 78, 034314. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.P.; Nikšić, T.; Vretenar, D.; Meng, J.; Lalazissis, G.A.; Ring, P. Microscopic analysis of nuclear quantum phase transitions in the N ≈ 90 region. Phys. Rev. C 2009, 79, 054301. [Google Scholar] [CrossRef] [Green Version]
- Garrett, P.E. Characterization of the β vibration and 02+ states in deformed nuclei. J. Phys. G 2001, 27, R1. [Google Scholar] [CrossRef]
- Sharpey-Schafer, J.F.; Bark, R.A.; Bvumbi, S.P.; Dinoko, T.R.S.; Majola, S.N.T. “Stiff” deformed nuclei, configuration dependent pairing and the β and γ degrees of freedom. Eur. Phys. J. A 2019, 55, 15. [Google Scholar] [CrossRef]
- Delaroche, J.-P.; Girod, M.; Libert, J.; Goutte, H.; Hilaire, S.; Péru, S.; Pillet, N.; Bertsch, G.F. Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction. Phys. Rev. C 2010, 81, 104303. [Google Scholar] [CrossRef] [Green Version]
- Stone, N.J. Table of nuclear electric quadrupole moments. At. Data Nucl. Data Tables 2016, 11–112, 1–28. [Google Scholar] [CrossRef]
- Tsunoda, Y.; Otsuka, T. Triaxial rigidity of 166Er and its Bohr-model realization. Phys. Rev. C 2021, 103, L021303. [Google Scholar] [CrossRef]
- Davydov, A.S.; Filippov, G.F. Rotational states in even atomic nuclei. Nucl. Phys. 1958, 8, 237–249. [Google Scholar] [CrossRef]
- Davydov, A.S.; Rostovsky, V.S. Relative transition probabilities between rotational levels of non-axial nuclei. Nucl. Phys. 1959, 12, 58–68. [Google Scholar] [CrossRef]
- Sun, Y.; Hara, K.; Sheikh, J.A.; Hirsch, J.G.; Velázquez, V.; Guidry, M. Multiphonon γ-vibrational bands and the triaxial projected shell model. Phys. Rev. C 2000, 61, 064323. [Google Scholar] [CrossRef] [Green Version]
- Boutachkov, P.; Aprahamian, A.; Sun, Y.; Sheikh, J.A.; Frauendorf, S. In-band and inter-band B(E2) values within the Triaxial Projected Shell Model. Eur. Phys. J. A 2002, 15, 455. [Google Scholar] [CrossRef]
- Fahlander, C.; Axelsson, A.; Heinebrodt, M.; Hartlein, T.; Schwalm, D. Two-phonon γ-vibrational states in 166Er. Phys. Lett. B 1996, 388, 475. [Google Scholar] [CrossRef]
- Garrett, P.E.; Kadi, M.; Li, M.; McGrath, C.A.; Sorokin, V.; Yeh, M.; Yates, S.W. Kπ = 0+ and 4+ two-phonon γ-vibrational states in 166Er. Phys. Rev. Lett. 1997, 78, 4545. [Google Scholar] [CrossRef]
- Hayashi, A.; Hara, K.; Ring, P. Existence of triaxial shapes in transitional nuclei. Phys. Rev. Lett. 1984, 53, 337–340. [Google Scholar] [CrossRef]
- Nilsson, S.G. Binding states of individual nucleons in strongly deformed nuclei. Dan. Mat. Fys. Medd. 1955, 29, 16. [Google Scholar]
- Kumar, K.; Baranger, M. Nuclear deformations in the pairing-plus-quadrupole model (III). Static nuclear shapes in the rare-earth region. Nucl. Phys. A 1968, 110, 529–554. [Google Scholar] [CrossRef]
- Bes, D.R.; Sorensen, R.A. The Pairing-Plus-Quadrupole Model. In Advances in Nuclear Physics; Baranger, M., Vogt, E., Eds.; Plenum Press: New York, NY, USA, 1969. [Google Scholar] [CrossRef]
- Elliott, J.P. Collective motion in the nuclear shell model I. Classification schemes for states of mixed configurations. Proc. R. Soc. Lond. Ser. A 1958, 245, 128–145. [Google Scholar]
- Elliott, J.P. Collective motion in the nuclear shell model II. The introduction of intrinsic wave-functions. Proc. R. Soc. Lond. Ser. A 1958, 245, 562–581. [Google Scholar]
- Caurier, E.; Zuker, A.; Poves, A.; Martiínez-Pinedo, G. Full Pf Shell Model Study A = 48 Nuclei. Phys. Rev. C 1994, 50, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Ahn, D.S.; Fukuda, N.; Geissel, H.; Inabe, N.; Iwasa, N.; Kubo, T. Location of the neutron dripline at fluorine and neon. Phys. Rev. Lett. 2019, 123, 212501. [Google Scholar] [CrossRef]
- Tsunoda, N.; Otsuka, T.; Shimizu, N.; Hjorth-Jensen, M.; Takayanagi, K.; Suzuki, T. Exotic neutron-rich medium-mass nuclei with realistic nuclear forces. Phys. Rev. C 2017, 95, 021304(R). [Google Scholar] [CrossRef] [Green Version]
- Machleidt, R.; Entem, D.R. Chiral effective field theory and nuclear forces. Phys. Rep. 2011, 503, 1–75. [Google Scholar] [CrossRef] [Green Version]
- Bogner, S.; Kuo, T.T.S.; Coraggio, L.; Covello, A.; Itaco, N. Low momentum nucleon-nucleon potential and shell model effective interactions. Phys. Rev. C 2002, 65, 051301. [Google Scholar] [CrossRef] [Green Version]
- Nogga, A.; Bogner, S.K.; Schwenk, A. Low-momentum interaction in few-nucleon systems. Phys. Rev. C 2004, 70, 061002. [Google Scholar] [CrossRef] [Green Version]
- Takayanagi, K. Effective interaction in non-degenerate model space. Nucl. Phys. A 2011, 852, 61–81. [Google Scholar] [CrossRef]
- Takayanagi, K. Effective Hamiltonian in the extended Krenciglowa-Kuo method. Nucl. Phys. A 2011, 864, 91–112. [Google Scholar] [CrossRef]
- Tsunoda, N.; Takayanagi, K.; Hjorth-Jensen, M.; Otsuka, T. Multi-shell effective interactions. Phys. Rev. C 2014, 89, 024313. [Google Scholar] [CrossRef] [Green Version]
- Coraggio, L.; Covello, A.; Gargano, A.; Itaco, N. Similarity of nuclear structure in the 132Sn and 208Pb regions: Proton-neutron multiplets. Phys. Rev. C 2009, 80, 021305. [Google Scholar] [CrossRef] [Green Version]
- Arnswald, K.; Braunroth, T.; Seidlitz, M.; Coraggio, L.; Reiter, P.; Birkenbach, B. Enhanced collectivity along the N=Z line: Lifetime measurements in 44Ti, 48Cr, and 52Fe. Phys. Lett. B 2017, 772, 599–606. [Google Scholar] [CrossRef]
- Tanihata, I.; Hamagaki, H.; Hashimoto, O.; Shida, Y.; Yoshikawa, N.; Sugimoto, K. Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 1985, 55, 2676–2679. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.G.; Jonson, B. The neutron halo of extremely neutron-rich nuclei. Europhys. Lett. 1987, 4, 409–414. [Google Scholar] [CrossRef]
- Abe, T.; Maris, P.; Otsuka, T.; Shimizu, N.; Utsuno, Y.; Vary, J.P. Ground-state properties of light 4n self-conjugate nuclei in ab initio no-core Monte Carlo shell model calculations with nonlocal NN interactions. Phys. Rev. C 2021, 104, 054315. [Google Scholar] [CrossRef]
- Otsuka, T.; Abe, T.; Yoshida, T.; Tsunoda, Y.; Shimizu, N.; Itagaki, N.; Utsuno, Y.; Vary, J.; Maris, P.; Ueno, H.; Riken, Wako, Japan. This Material Belongs to the Field of Nuclear Physics. 2022; Unpublished work. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otsuka, T. Emerging Concepts in Nuclear Structure Based on the Shell Model. Physics 2022, 4, 258-285. https://doi.org/10.3390/physics4010018
Otsuka T. Emerging Concepts in Nuclear Structure Based on the Shell Model. Physics. 2022; 4(1):258-285. https://doi.org/10.3390/physics4010018
Chicago/Turabian StyleOtsuka, Takaharu. 2022. "Emerging Concepts in Nuclear Structure Based on the Shell Model" Physics 4, no. 1: 258-285. https://doi.org/10.3390/physics4010018
APA StyleOtsuka, T. (2022). Emerging Concepts in Nuclear Structure Based on the Shell Model. Physics, 4(1), 258-285. https://doi.org/10.3390/physics4010018