# Progress in a Vacuum Weight Search Experiment

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. General Scheme of the Experiment

## 3. The Cryogenic System

#### Temperature Actuators

## 4. The Balance Prototype

## 5. Discussion

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys.
**1989**, 61, 1–23. [Google Scholar] [CrossRef] - Bianchi, E.; Rovelli, C. Why all these prejudices against a constant? arXiv preprint
**2010**, arXiv:1002.3966. [Google Scholar] - Padmanabhan, T.; Padmanabhan, H. Cosmological Constant from the Emergent Gravity Perspective. Int. J. Mod. Phys. D
**2014**, 23, 1430011. [Google Scholar] [CrossRef] [Green Version] - Padmanabhan, T. The Atoms Of Space, Gravity and the Cosmological Constant. Int. J. Mod. Phys. D
**2016**, 25, 1630020. [Google Scholar] [CrossRef] - Sola, J. Cosmological constant and vacuum energy: Old and new ideas. J. Phys. Conf. Ser.
**2013**, 453, 012015. [Google Scholar] [CrossRef] - Cree, S.S.; Davis, T.M.; Ralph, T.C.; Wang, Q.; Zhu, Z.; Unruh, W.G. Can the fluctuations of the quantum vacuum solve the cosmological constant problem? Phys. Rev. D
**2018**, 98, 063506. [Google Scholar] [CrossRef] [Green Version] - Lombrise, L. On the cosmological constant problem. Phys. Lett. B
**2019**, 797, 134804. [Google Scholar] [CrossRef] - Kohri, K.; Matsui, H. Cosmological Constant Problemand Renormalized Vacuum EnergyDensity in Curved Background. JCAP
**2017**, 1706, 006. [Google Scholar] [CrossRef] [Green Version] - Wang, Q.; Zhu, Z.; Unruh, W.G. How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe. Phys. Rev. D
**2017**, 95, 103504. [Google Scholar] [CrossRef] [Green Version] - Mazzitelli, F.D.; Trombetta, L.G. Comment on “How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe”. Phys. Rev. D
**2018**, 97, 068301. [Google Scholar] [CrossRef] [Green Version] - Wang, Q.; Unruh, W.G. Reply to “Comment on ‘How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe’”. Phys. Rev. D
**2018**, 97, 068302. [Google Scholar] [CrossRef] - Bengochea, G.R.; Okon, E.; Sudarsky, D. Can the quantum vacuum fluctuations really solve the cosmological constant problem? arXiv
**2019**, arXiv:1906.05406. [Google Scholar] - Mostepanenko, V.M.; Klimchitskaya, G.L. Whether an Enormously Large Energy Density of the Quantum Vacuum Is Catastrophic. Symmetry
**2019**, 11, 314. [Google Scholar] [CrossRef] [Green Version] - Lima, A.P.C.M.; Alencar, G.; Muniz, C.R.; Landim, R.R. Null second order corrections to Casimir energy in weak gravitational field. JCAP
**2019**, 1907, 011. [Google Scholar] [CrossRef] [Green Version] - Sorge, F. Casimir effect in a weak gravitational field: Schwinger’s approach. Class. Quantum Grav.
**2019**, 36, 235006. [Google Scholar] [CrossRef] - Bimonte, G.; Calloni, E.; Esposito, G.; Rosa, L. Energy-momentum tensor for a Casimir apparatus in a weak gravitational field. Phys. Rev. D
**2006**, 74, 085011. [Google Scholar] [CrossRef] [Green Version] - Milton, K.A.; Shajesh, K.V.; Fulling, S.A.; Parashar, P. How does Casimir energy fall? IV. Gravitational interaction of regularized quantum vacuum energy. Phys. Rev. D
**2014**, 89, 064027. [Google Scholar] [CrossRef] [Green Version] - Blasone, M.; Lambiase, G.; Petruzziello, L.; Stabile, A. Casimir effect in Post-Newtonian Gravity with Lorentz-violation. Eur. Phys. J. C
**2018**, 78, 976. [Google Scholar] [CrossRef] - Lambiase, G.; Stabile, A. Casimir effect in Extended Theories of Gravity. Phys. Rev. D
**2017**, 95, 084019. [Google Scholar] [CrossRef] [Green Version] - Buoninfante, L.; Lambiase, G.; Petruzziello, L.; Stabile, A. Casimir effect in quadratic theories of gravity. Eur. Phys. J. C
**2019**, 79, 41. [Google Scholar] [CrossRef] - Burdyuzha, V. The Dark Components of the Universe Are Slowly Clarified. J. Exp. Theor. Phys.
**2017**, 124, 358–368. [Google Scholar] [CrossRef] [Green Version] - Chen, X. Vacuum fluctuation force on a rigid Casimir cavity in de Sitter and Schwarzschild-de Sitter spacetime. Int. J. Mod. Phys. A
**2012**, 27, 1250166. [Google Scholar] [CrossRef] [Green Version] - Calloni, E.; De Laurentis, M.; De Rosa, R.; Di Fiore, L.; Esposito, G.; Garufi, F.; Rosa, L.; Rovelli, C.; Ruggi, P.; Tafuri, F.; et al. Towards weighing the condensation energy to ascertain the Archimedes force of vacuum. Phys. Rev. D
**2014**, 90, 022002. [Google Scholar] [CrossRef] [Green Version] - Shevchenko, V.; Shevrin, E. Archimedes Force on Casimir Apparatus. Mod. Phys. Lett. A
**2016**, 31, 1650166. [Google Scholar] [CrossRef] [Green Version] - Chen, F.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Control of the Casimir force by the modification of dielectric properties with light. Phys. Rev. B
**2007**, 76, 035338. [Google Scholar] [CrossRef] [Green Version] - Banishev, A.A.; Chang, C.C.; Castillo-Garza, R.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Modifying the Casimir force between indium tin oxide film and Au sphere. Phys. Rev. B
**2012**, 85, 045436. [Google Scholar] [CrossRef] [Green Version] - Decca, R.S. Differential Casimir measurements on an engineered sample: Some experimental details. Int. J. Mod. Phys. A
**2016**, 31, 1641024. [Google Scholar] [CrossRef] - Bimonte, G.; Calloni, E.; Esposito, G.; Milano, L.; Rosa, L. Towards measuring variations of Casimir energy by a superconducting cavity. Phys. Rev. Lett.
**2005**, 94, 180402. [Google Scholar] [CrossRef] [Green Version] - Bimonte, G.; Calloni, E.; Esposito, G.; Rosa, L. Variations of Casimir energy from a superconducting transition. Nucl. Phys. B
**2005**, 726, 441. [Google Scholar] [CrossRef] [Green Version] - Bimonte, G.; Born, D.; Calloni, E.; Esposito, G.; Huebner, U.; Il’ichev, E.; Rosa, L.; Tafuri, F.; Vaglio, R. Low noise cryogenic system for the measurement of the Casimir energy in rigid cavities. J. Phys. A
**2008**, 41, 164023. [Google Scholar] [CrossRef] - Allocca, A.; Bimonte, G.; Born, D.; Calloni, E.; Esposito, G.; Huebner, U.; Il’ichev, E.; Rosa, L.; Tafuri, F. Results of measuring the influence of Casimir energy on superconducting phase transitions. J. Supercond. Novel Magn.
**2012**, 25, 2557. [Google Scholar] [CrossRef] [Green Version] - Kempf, A. On the Casimir effect in the high-T
_{c}cuprates. J. Phys. A Math. Theor.**2008**, 41, 164038. [Google Scholar] [CrossRef] - Orlando, M.T.D.; Rouver, A.N.; Rocha, J.R.; Cavichini, A.S. Correlation among the effective mass (m
^{*}), λ_{ab}and T_{c}of superconducting cuprates in a Casimir energy scenario. Phys. Lett. A**2018**, 382, 1486–1491. [Google Scholar] [CrossRef] - Rosa, L.; Avino, S.; Calloni, E.; Caprara, S.; De Laurentis, M.; De Rosa, R.; Esposito, G.; Grilli, M.; Majorana, E.; Pepe, G.P.; et al. Casimir energy for two and three superconducting coupled cavities: Numerical calculations. Eur. Phys. J. Plus
**2017**, 132, 478. [Google Scholar] [CrossRef] [Green Version] - Nozzoli, F. A balance for Dark Matter bound states. Astropart. Phys.
**2017**, 91, 22–33. [Google Scholar] [CrossRef] [Green Version] - Harms, J.; Venkateswara, K. Newtonian-noise cancellation in large-scale interferometric GW detectors using seismic tiltmeters. Class. Quant. Grav.
**2016**, 33, 234001. [Google Scholar] [CrossRef] - Coughlin, M.W.; Harms, J.; Driggers, J.; McManus, D.J.; Mukund, N.; Ross, M.P.; Slagmolen, B.J.J.; Venkateswara, K. Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO. Phys. Rev. Lett.
**2018**, 121, 221104. [Google Scholar] [CrossRef] [Green Version] - Negele, J.W.; Orland, H. Quantum Many-Particle Systems; Frontiers in Physics; Addison Wesley Publishing Company: Boston, MA, USA, 1987. [Google Scholar]
- Rodriguez, J.E.; Lopez, J. Thermoelectric figure of merit of oxygen-deficient YBCO perovskites. Phys. B
**2007**, 387, 143–146. [Google Scholar] [CrossRef] - Peng, Y.Y.; Dellea, G.; Minola, M.; Conni, M.; Amorese, A.; Di Castro, D.; De Luca, G.M.; Kummer, K.; Salluzzo, M.; Sun, X.; et al. Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors. Nat. Phys.
**2017**, 13, 1201–1206. [Google Scholar] [CrossRef] [Green Version] - Venkateswara, K.; Hagedorn, C.A.; Turner, M.D.; Arp, T.; Gundlach, J.H. A high-precision mechanical absolute-rotation sensor. Rev. Sci. Instrum.
**2014**, 85, 015005. [Google Scholar] [CrossRef] [Green Version] - Ciani, G.; Chilton, A.; Apple, S.; Olatunde, T.; Aitken, M.; Mueller, G.; Conklin, J.W. A New Torsion Pendulum for Gravitational Reference Sensor Technology Development. Rev. Sci. Instrum.
**2017**, 88, 064502. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bassan, M.; Cavalleri, A.; De Laurentis, M.; De Marchi, F.; De Rosa, R.; Di Fiore, L.; Dolesi, R.; Finetti, N.; Garufi, F.; Grado, A.; et al. Actuation crosstalk in free-falling systems: Torsion pendulum results for the engineering model of the LISA path finder gravitational reference sensor. Astropart. Phys.
**2018**, 97, 19–26. [Google Scholar] [CrossRef] [Green Version] - Naticchioni, L.; Perciballi, M.; Ricci, F.; Coccia, E.; Malvezzi, V.; Acernese, F.; Barone, F.; Giordano, G.; Romano, R.; Punturo, M.; et al. Microseismic studies of an underground site for a new interferometric gravitational wave detector. Class. Quant. Grav.
**2014**, 31, 105016. [Google Scholar] [CrossRef] - Punturo, M.; Somira, K. Underground gravitational wave observatories: KAGRA and ET. Int. J. Mod. Phys.
**2013**, D22, 1330010. [Google Scholar] [CrossRef] - Schiavinato, L.; Mazzalai, P.; Gemme, G.; Losurdo, G.; Punturo, M.; Paoli, A.; Ricci, F.; Calloni, E.; Oggiano, G.; Carpinelli, M. A new underground laboratory for exploring the universe: The design of a third generation gravitational wave observatory. In Tunnels and Underground Cities: Engineering and Innovation Meet Archaeology, Architecture and Art. Proceedings of the WTC2019 ITA-AITES World Tunnel Congress, Naples, Italy, 3–9 May 2019; Peila, D., Viggiani, G., Celestino, T., Eds.; CRC Press/Balkema: Leiden, The Netherlands, 2019; pp. 4225–4234. [Google Scholar]

**Figure 1.**Sketch of the final balance experiment. Each disc is suspended on one end-arm and surrounded by a metallic enclosure for thermal actuation (not shown). The optical read-out is a Michelson interferometer and the signal is taken with respect to a reference arm.

**Figure 2.**Cryostat. It is formed by three chambers: the experimental chamber, the liquid nitrogen chamber and the insulation chamber. The total height is 3.15 m, the diameter of the inner chamber is 1.8 m, and the diameter of the most external chamber is 2.4 m. The basement is formed by three flanges, the most external has diameter of 2.6 m.

**Figure 6.**Block diagram of the balance control loop. See text for the meaning of each block and signal names.

**Figure 7.**Interferometric signal (green), the signal $\alpha H\xb7{V}_{corr}$ (blue), and the subtracted signal named $Out$ (red), see text for the definitions of the variables.

**Figure 8.**Balance sensitivity to torque before (blue) and after (red) subtraction. The final expected signal is shown in black.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Avino, S.; Calloni, E.; Caprara, S.; De Laurentis, M.; De Rosa, R.; Di Girolamo, T.; Errico, L.; Gagliardi, G.; Grilli, M.; Mangano, V.;
et al. Progress in a Vacuum Weight Search Experiment. *Physics* **2020**, *2*, 1-13.
https://doi.org/10.3390/physics2010001

**AMA Style**

Avino S, Calloni E, Caprara S, De Laurentis M, De Rosa R, Di Girolamo T, Errico L, Gagliardi G, Grilli M, Mangano V,
et al. Progress in a Vacuum Weight Search Experiment. *Physics*. 2020; 2(1):1-13.
https://doi.org/10.3390/physics2010001

**Chicago/Turabian Style**

Avino, Saverio, Enrico Calloni, Sergio Caprara, Martina De Laurentis, Rosario De Rosa, Tristano Di Girolamo, Luciano Errico, Gianluca Gagliardi, Marco Grilli, Valentina Mangano,
and et al. 2020. "Progress in a Vacuum Weight Search Experiment" *Physics* 2, no. 1: 1-13.
https://doi.org/10.3390/physics2010001