Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = Casimir energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 351 KiB  
Article
Vacuum Self-Dressing of an Atom and Its Physical Effects
by Roberto Passante and Lucia Rizzuto
Physics 2025, 7(2), 20; https://doi.org/10.3390/physics7020020 - 6 Jun 2025
Viewed by 1218
Abstract
We consider a multilevel atom, such as a hydrogen atom, interacting with the quantum electromagnetic field in the dressed ground state of the interacting system. Using perturbation theory within the dipole approximation, we evaluate the dressed ground state and investigate the effect of [...] Read more.
We consider a multilevel atom, such as a hydrogen atom, interacting with the quantum electromagnetic field in the dressed ground state of the interacting system. Using perturbation theory within the dipole approximation, we evaluate the dressed ground state and investigate the effect of atomic self-dressing on several field and atomic observables. Specifically, we obtain general expressions of the renormalized electric and magnetic field fluctuations and energy densities around the atom, and analyze their scaling with the distance from the atom, obtaining approximated expressions in the so-called near and far zones. We also investigate nonlocal spatial field correlations around the atom. We stress how the quantities we evaluate can be probed through two- and three-body nonadditive Casimir–Polder dispersion interactions. We also investigate the effect of self-dressing—namely, the virtual transitions occurring in the dressed ground state—on atomic observables, such as the average potential energy of the electron in the nuclear field. This also allows us to obtain a more fundamental quantum basis for the Welton interpretation of the Lamb shift of a ground-state hydrogen atom, in terms of the atomic self-dressing processes. Full article
57 pages, 10943 KiB  
Review
Jean-Marie Souriau’s Symplectic Foliation Model of Sadi Carnot’s Thermodynamics
by Frédéric Barbaresco
Entropy 2025, 27(5), 509; https://doi.org/10.3390/e27050509 - 9 May 2025
Viewed by 910
Abstract
The explanation of thermodynamics through geometric models was initiated by seminal figures such as Carnot, Gibbs, Duhem, Reeb, and Carathéodory. Only recently, however, has the symplectic foliation model, introduced within the domain of geometric statistical mechanics, provided a geometric definition of entropy as [...] Read more.
The explanation of thermodynamics through geometric models was initiated by seminal figures such as Carnot, Gibbs, Duhem, Reeb, and Carathéodory. Only recently, however, has the symplectic foliation model, introduced within the domain of geometric statistical mechanics, provided a geometric definition of entropy as an invariant Casimir function on symplectic leaves—specifically, the coadjoint orbits of the Lie group acting on the system, where these orbits are interpreted as level sets of entropy. We present a symplectic foliation interpretation of thermodynamics, based on Jean-Marie Souriau’s Lie group thermodynamics. This model offers a Lie algebra cohomological characterization of entropy, viewed as an invariant Casimir function in the coadjoint representation. The dual space of the Lie algebra is foliated into coadjoint orbits, which are identified with the level sets of entropy. Within the framework of thermodynamics, dynamics on symplectic leaves—described by the Poisson bracket—are associated with non-dissipative phenomena. Conversely, on the transversal Riemannian foliation (defined by the level sets of energy), the dynamics, characterized by the metric flow bracket, induce entropy production as transitions occur from one symplectic leaf to another. Full article
Show Figures

Figure 1

12 pages, 235 KiB  
Article
Casimir Effect and the Cosmological Constant
by Jaume Giné
Symmetry 2025, 17(5), 634; https://doi.org/10.3390/sym17050634 - 23 Apr 2025
Viewed by 1501
Abstract
Any quantum theory of gravity at the quantum gravity scale has the expectation of the existence of a minimal observable length. It is also expected that this fundamental length has a principal role in nature at the quantum gravity scale. From the uncertainty [...] Read more.
Any quantum theory of gravity at the quantum gravity scale has the expectation of the existence of a minimal observable length. It is also expected that this fundamental length has a principal role in nature at the quantum gravity scale. From the uncertainty principle that influences the quantum measurement process, the existence of a minimal measurable length can be heuristically deduced. The existence of this minimal measurable length leads to an apparent discretization of spacetime, as distinguishing below this minimal length becomes impossible. In topologically non-trivial cosmological models, the Casimir effect is significant since it alters the spectrum of vacuum fluctuations and leads to a non-zero Casimir energy density. This suggests that the topology of the Universe could influence its vacuum energy, potentially affecting its expansion dynamics. In this sense, the Casimir effect could contribute to the observed acceleration of the Universe’s expansion. Here, we use the Casimir effect to determine the value of the electromagnetic zero-point energy in the Universe, applying it to the regions outside and inside the Universe horizon or Hubble horizon and assuming the existence of this minimal length. The Casimir effect is directly related to the boundary conditions imposed by the geometry and symmetries of the Hubble horizon. The agreement of the obtained value with the observed cosmological constant is not exact and therefore the contribution of non-electromagnetic radiation (gravitational effects) must be take into account. Full article
(This article belongs to the Section Physics)
18 pages, 1348 KiB  
Article
Adhesion Energy for Nonideal Cantilever and Its Relation to Casimir–Lifshitz Forces
by Ivan A. Soldatenkov and Vitaly B. Svetovoy
Physics 2024, 6(4), 1204-1221; https://doi.org/10.3390/physics6040074 - 23 Oct 2024
Cited by 4 | Viewed by 1617
Abstract
The method of the adhered cantilever, borrowed from microtechnology, can help in gaining fundamental knowledge about dispersion forces acting at distances of about 10 nm, which are problematic to access in the usual Casimir-type experiments. A recently presented setup measures the shape of [...] Read more.
The method of the adhered cantilever, borrowed from microtechnology, can help in gaining fundamental knowledge about dispersion forces acting at distances of about 10 nm, which are problematic to access in the usual Casimir-type experiments. A recently presented setup measures the shape of cantilevers with high precision, which is needed for analyzing the involved forces. The first measurements reveal several nonidealities crucial for the data analysis. In this paper, a generalized formula is deduced that relates the parameters of a cantilever to the adhesion energy. The application of the formula is demonstrated using the first test result from the setup, where a silicon cantilever adhered to a substrate sputters with ruthenium. Detailed information of the roughness of interacting surfaces, which deviates significantly from the normal distribution, is emphasized. Although not crucial, the electrostatic contribution can be significant due to the slight twisting of the cantilever. The theoretical prediction of the adhesion energy is based on Lifshitz theory. Comparing theory and experiment yields a contact distance of 45 nm and an adhesion energy of 1.3 µJ/m2, resulting from the Casimir–Lifshitz forces. Significant uncertainties arise from the uncontrolled electrostatic contribution. Factors that need to be addressed to measure weak adhesion between rough surfaces are highlighted. Full article
(This article belongs to the Section Classical Physics)
Show Figures

Figure 1

26 pages, 553 KiB  
Review
The Casimir Effect in Finite-Temperature and Gravitational Scenarios
by Valdir Barbosa Bezerra, Herondy Francisco Santana Mota, Augusto P. C. M. Lima, Geová Alencar and Celio Rodrigues Muniz
Physics 2024, 6(3), 1046-1071; https://doi.org/10.3390/physics6030065 - 13 Aug 2024
Cited by 1 | Viewed by 2662
Abstract
In this paper, we review some recent findings related to the Casimir effect. Initially, the thermal corrections to the vacuum Casimir energy density are calculated, for a quantum scalar field, whose modes propagate in the (3+1)-dimensional Euclidean spacetime, subject to a nontrivial compact [...] Read more.
In this paper, we review some recent findings related to the Casimir effect. Initially, the thermal corrections to the vacuum Casimir energy density are calculated, for a quantum scalar field, whose modes propagate in the (3+1)-dimensional Euclidean spacetime, subject to a nontrivial compact boundary condition. Next, we analyze the Casimir effect induced by two parallel plates placed in a weak gravitational field background. Finally, we review the three-dimensional wormhole solutions sourced by the Casimir density and pressures associated with the quantum vacuum fluctuations of the Yang-Mills field. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
Show Figures

Figure 1

29 pages, 429 KiB  
Review
A Review of Stable, Traversable Wormholes in f(R) Gravity Theories
by Ramesh Radhakrishnan, Patrick Brown, Jacob Matulevich, Eric Davis, Delaram Mirfendereski and Gerald Cleaver
Symmetry 2024, 16(8), 1007; https://doi.org/10.3390/sym16081007 - 7 Aug 2024
Cited by 8 | Viewed by 6388
Abstract
It has been proven that in standard Einstein gravity, exotic matter (i.e., matter violating the pointwise and averaged Weak and Null Energy Conditions) is required to stabilize traversable wormholes. Quantum field theory permits these violations due to the quantum coherent effects found in [...] Read more.
It has been proven that in standard Einstein gravity, exotic matter (i.e., matter violating the pointwise and averaged Weak and Null Energy Conditions) is required to stabilize traversable wormholes. Quantum field theory permits these violations due to the quantum coherent effects found in any quantum field. Even reasonable classical scalar fields violate the energy conditions. In the case of the Casimir effect and squeezed vacuum states, these violations have been experimentally proven. It is advantageous to investigate methods to minimize the use of exotic matter. One such area of interest is extended theories of Einstein gravity. It has been claimed that in some extended theories, stable traversable wormholes solutions can be found without the use of exotic matter. There are many extended theories of gravity, and in this review paper, we first explore f(R) theories and then explore some wormhole solutions in f(R) theories, including Lovelock gravity and Einstein Dilaton Gauss–Bonnet (EdGB) gravity. For completeness, we have also reviewed ‘Other wormholes’ such as Casimir wormholes, dark matter halo wormholes, thin-shell wormholes, and Nonlocal Gravity (NLG) wormholes, where alternative techniques are used to either avoid or reduce the amount of exotic matter that is required. Full article
(This article belongs to the Special Issue Symmetry in Gravity Theories and Cosmology)
15 pages, 1096 KiB  
Article
Screened Scalar Fields in the Laboratory and the Solar System
by Hauke Fischer, Christian Käding and Mario Pitschmann
Universe 2024, 10(7), 297; https://doi.org/10.3390/universe10070297 - 15 Jul 2024
Cited by 18 | Viewed by 1479
Abstract
The last few decades have provided abundant evidence for physics beyond the two standard models of particle physics and cosmology. As is now known, the by far largest part of our universe’s matter/energy content lies in the ‘dark’, and consists of dark energy [...] Read more.
The last few decades have provided abundant evidence for physics beyond the two standard models of particle physics and cosmology. As is now known, the by far largest part of our universe’s matter/energy content lies in the ‘dark’, and consists of dark energy and dark matter. Despite intensive efforts on the experimental as well as the theoretical side, the origins of both are still completely unknown. Screened scalar fields have been hypothesized as potential candidates for dark energy or dark matter. Among these, some of the most prominent models are the chameleon, symmetron, and environment-dependent dilaton. In this article, we present a summary containing the most recent experimental constraints on the parameters of these three models. For this, experimental results have been employed from the qBounce collaboration, neutron interferometry, and Lunar Laser Ranging (LLR), among others. In addition, constraints are forecast for the Casimir and Non-Newtonian force Experiment (Cannex). Combining these results with previous ones, this article collects the most up-to-date constraints on the three considered screened scalar field models. Full article
Show Figures

Figure 1

52 pages, 4729 KiB  
Article
Force Metrology with Plane Parallel Plates: Final Design Review and Outlook
by Hamid Haghmoradi, Hauke Fischer, Alessandro Bertolini, Ivica Galić, Francesco Intravaia, Mario Pitschmann, Raphael A. Schimpl and René I. P. Sedmik
Physics 2024, 6(2), 690-741; https://doi.org/10.3390/physics6020045 - 7 May 2024
Cited by 6 | Viewed by 2818
Abstract
During the past few decades, abundant evidence for physics beyond the two standard models of particle physics and cosmology was found. Yet, we are tapping in the dark regarding our understanding of the dark sector. For more than a century, open problems related [...] Read more.
During the past few decades, abundant evidence for physics beyond the two standard models of particle physics and cosmology was found. Yet, we are tapping in the dark regarding our understanding of the dark sector. For more than a century, open problems related to the nature of the vacuum remained unresolved. As well as the traditional high-energy frontier and cosmology, technological advancement provides complementary access to new physics via high-precision experiments. Among the latter, the Casimir And Non-Newtonian force EXperiment (Cannex) has successfully completed its proof-of-principle phase and is going to commence operation soon. Benefiting from its plane parallel plate geometry, both interfacial and gravity-like forces are maximized, leading to increased sensitivity. A wide range of dark sector forces, Casimir forces in and out of thermal equilibrium, and gravity can be tested. This paper describes the final experimental design, its sensitivity, and expected results. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
Show Figures

Figure 1

16 pages, 622 KiB  
Article
Casimir Energy in (2 + 1)-Dimensional Field Theories
by Manuel Asorey, Claudio Iuliano and Fernando Ezquerro
Physics 2024, 6(2), 613-628; https://doi.org/10.3390/physics6020040 - 17 Apr 2024
Cited by 2 | Viewed by 1511
Abstract
We explore the dependence of vacuum energy on the boundary conditions for massive scalar fields in (2 + 1)-dimensional spacetimes. We consider the simplest geometrical setup given by a two-dimensional space bounded by two homogeneous parallel wires in order to compare it with [...] Read more.
We explore the dependence of vacuum energy on the boundary conditions for massive scalar fields in (2 + 1)-dimensional spacetimes. We consider the simplest geometrical setup given by a two-dimensional space bounded by two homogeneous parallel wires in order to compare it with the non-perturbative behaviour of the Casimir energy for non-Abelian gauge theories in (2 + 1) dimensions. Our results show the existence of two types of boundary conditions which give rise to two different asymptotic exponential decay regimes of the Casimir energy at large distances. The two families are distinguished by the feature that the boundary conditions involve or not interrelations between the behaviour of the fields at the two boundaries. Non-perturbative numerical simulations and analytical arguments show such an exponential decay for Dirichlet boundary conditions of SU(2) gauge theories. The verification that this behaviour is modified for other types of boundary conditions requires further numerical work. Subdominant corrections in the low-temperature regime are very relevant for numerical simulations, and they are also analysed in this paper. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
Show Figures

Figure 1

15 pages, 335 KiB  
Review
Axion Electrodynamics and the Casimir Effect
by Iver Brevik, Subhojit Pal, Yang Li, Ayda Gholamhosseinian and Mathias Boström
Physics 2024, 6(1), 407-421; https://doi.org/10.3390/physics6010027 - 14 Mar 2024
Cited by 1 | Viewed by 2549
Abstract
We present a concise review of selected parts of axion electrodynamics and their application to Casimir physics. We present the general formalism including the boundary conditions at a dielectric surface, derive the dispersion relation in the case where the axion parameter has a [...] Read more.
We present a concise review of selected parts of axion electrodynamics and their application to Casimir physics. We present the general formalism including the boundary conditions at a dielectric surface, derive the dispersion relation in the case where the axion parameter has a constant spatial derivative in the direction normal to the conducting plates, and calculate the Casimir energy for the simple case of scalar electrodynamics using dimensional regularization. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
17 pages, 455 KiB  
Review
The Nature of Dark Energy and Constraints on Its Hypothetical Constituents from Force Measurements
by Galina L. Klimchitskaya and Vladimir M. Mostepanenko
Universe 2024, 10(3), 119; https://doi.org/10.3390/universe10030119 - 4 Mar 2024
Cited by 5 | Viewed by 1774
Abstract
This review considers the theoretical approaches to the understanding of dark energy, which comprises approximately 68% of the energy of our Universe and explains the acceleration in its expansion. Following a discussion of the main approach based on Einstein’s equations with the cosmological [...] Read more.
This review considers the theoretical approaches to the understanding of dark energy, which comprises approximately 68% of the energy of our Universe and explains the acceleration in its expansion. Following a discussion of the main approach based on Einstein’s equations with the cosmological term, the explanations of dark energy using the concept of some kind of scalar field are elucidated. These include the concept of a quintessence and modifications of the general theory of relativity by means of the scalar–tensor gravity exploiting the chameleon, symmetron and environment-dependent dilaton fields and corresponding particles. After mentioning several laboratory experiments allowing us to constrain the hypothetical scalar fields modeling the dark energy, special attention is devoted to the possibility of constraining the parameters of chameleon, symmetron and environment-dependent dilaton fields from measuring the Casimir force. It is concluded that the parameters of each of these fields can be significantly strengthened in near future by using the next-generation setups in preparation suitable for measuring the Casimir force at larger separations. Full article
(This article belongs to the Special Issue The Friedmann Cosmology: A Century Later)
Show Figures

Figure 1

16 pages, 509 KiB  
Article
The Normal Casimir Force for Lateral Moving Planes with Isotropic Conductivities
by Nail Khusnutdinov and Natalia Emelianova
Physics 2024, 6(1), 148-163; https://doi.org/10.3390/physics6010011 - 26 Jan 2024
Cited by 5 | Viewed by 1332
Abstract
We consider the two planes at zero temperature with isotropic conductivity that are in relative lateral motion with velocity v and interplane distance a. Two models of conductivity are taken into account—the constant and frequency-dependent Drude models. The normal (perpendicular to planes) [...] Read more.
We consider the two planes at zero temperature with isotropic conductivity that are in relative lateral motion with velocity v and interplane distance a. Two models of conductivity are taken into account—the constant and frequency-dependent Drude models. The normal (perpendicular to planes) Casimir force is analyzed in detail for two systems—(i) two planes with identical conductivity and (ii) one plane that is a perfect metal. The velocity correction to the Casimir energy, ΔvEv2, for small enough velocities is used for all considered cases. In the case of constant conductivity, η, the energy correction is ΔvEη/a3v/η2 for vη1. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
Show Figures

Figure 1

18 pages, 417 KiB  
Article
Vacuum Interaction of Topological Strings at Short Distances
by Yuri V. Grats and Pavel Spirin
Physics 2023, 5(4), 1163-1180; https://doi.org/10.3390/physics5040075 - 14 Dec 2023
Cited by 6 | Viewed by 1589
Abstract
The paper provides an extended overview of recent results obtained by the authors in the process of studying the vacuum interaction of topological cosmic strings at short distances, taking into account their transverse size a and the mass m of the quantized field. [...] Read more.
The paper provides an extended overview of recent results obtained by the authors in the process of studying the vacuum interaction of topological cosmic strings at short distances, taking into account their transverse size a and the mass m of the quantized field. We consider the case of a massive real-valued scalar field with minimal coupling. It is shown that at the interstring distances significantly larger than the Compton length, lc=1/m, the Casimir effect is damped exponentially. On the other hand, at distances smaller than lc but much larger than the typical string width, the field-mass influence becomes insignificant. In this case, the partial contribution of a massive field to the Casimir energy is of the same order as the contribution of a massless one. At these distances, the string’s transverse size is insignificant also. However, at the interstring distances of the same order as a string radius, the energy of the vacuum interaction of thick strings may significantly surpass the one for two infinitely thin strings with the same mass per unit length. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
Show Figures

Figure 1

18 pages, 510 KiB  
Article
Surface Casimir Densities on Branes Orthogonal to the Boundary of Anti-De Sitter Spacetime
by Aram Saharian
Physics 2023, 5(4), 1145-1162; https://doi.org/10.3390/physics5040074 - 14 Dec 2023
Cited by 1 | Viewed by 1443
Abstract
The paper investigates the vacuum expectation value of the surface energy–momentum tensor (SEMT) for a scalar field with general curvature coupling in the geometry of two branes orthogonal to the boundary of anti-de Sitter (AdS) spacetime. For Robin boundary conditions on the branes, [...] Read more.
The paper investigates the vacuum expectation value of the surface energy–momentum tensor (SEMT) for a scalar field with general curvature coupling in the geometry of two branes orthogonal to the boundary of anti-de Sitter (AdS) spacetime. For Robin boundary conditions on the branes, the SEMT is decomposed into the contributions corresponding to the self-energies of the branes and the parts induced by the presence of the second brane. The renormalization is required for the first parts only, and for the corresponding regularization the generalized zeta function method is employed. The induced SEMT is finite and is free from renormalization ambiguities. For an observer living on the brane, the corresponding equation of state is of the cosmological constant type. Depending on the boundary conditions and on the separation between the branes, the surface energy densities can be either positive or negative. The energy density induced on the brane vanishes in special cases of Dirichlet and Neumann boundary conditions on that brane. The effect of gravity on the induced SEMT is essential at separations between the branes of the order or larger than the curvature radius for AdS spacetime. In the considerably large separation limit, the decay of the SEMT, as a function of the proper separation, follows a power law for both massless and massive fields. For parallel plates in Minkowski bulk and for massive fields the fall-off of the corresponding expectation value is exponential. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
Show Figures

Figure 1

13 pages, 3174 KiB  
Article
Dynamical Sensitivity of Three-Layer Micro Electromechanical Systems to the Optical Properties of the Intervening Liquid Layer
by Fatemeh Tajik and George Palasantzas
Physics 2023, 5(4), 1081-1093; https://doi.org/10.3390/physics5040070 - 21 Nov 2023
Cited by 2 | Viewed by 1568
Abstract
Here, we investigate the actuation dynamics of a micro device with different intervening liquids between the actuating components under the influence of Casimir and dissipative hydrodynamic forces. This is enabled via phase space portraits, which demonstrate that by increasing the dielectric response of [...] Read more.
Here, we investigate the actuation dynamics of a micro device with different intervening liquids between the actuating components under the influence of Casimir and dissipative hydrodynamic forces. This is enabled via phase space portraits, which demonstrate that by increasing the dielectric response of the intervening layer the autonomous device may not come into stiction due to the decreasing in magnitude Casmir force. Unlike the micro devices that are placed in vacuum with an intervening liquid, the phase portraits show only a spiral trajectory which eventually stops at a rest position due to the strong energy dissipation by the position dependent hydrodynamic drag forces, even when considering sufficiently strong restoring forces. Moreover, it is feasible to expand the area of motion using intervening liquids with lower dynamic viscosity or increasing the slip length of the intervening fluid. Finally, under the influence of an external driven force, which is the realistic case for possible applications, the system can reach stable oscillation at larger separations with an amplitude higher for the liquid that led to lower Casimir and hydrodynamic forces. Hence, the results presented in this study are essential for studying the dynamical behavior of MEMS and their design in liquid environments. Full article
(This article belongs to the Special Issue 75 Years of the Casimir Effect: Advances and Prospects)
Show Figures

Figure 1

Back to TopTop