Gravitational Waves from Mirror World
Abstract
:1. Introduction
2. Binary Black Holes
2.1. Primordial Black Holes
- When two PBHs accidentally pass each other with sufficiently small impact parameter, they can form BBHs due to energy loss by gravitational radiation [20]. In this scenario, in order to explain the event rate estimated by LIGO, the fraction of PBHs in DM (2) is required to be the order of unity. This is in contradiction with the CMB (Cosmic Microwave Background) anisotropies, but in [20], it is assumed that constraints from CMB require modeling of several complex physical processes and, therefore, could have a significant uncertainty.
- A different mechanism for estimating a PBH merging rate was suggested in [27]. Cosmic expansion pulls PBHs away from each other, while gravitation tries to keep them together. If gravitational energy between two PBHs exceeds expansion energy, they start to free-fall on one another. However, neighboring PBH can exert torque on their system, avoiding their head-on collision and forming an eccentric binary in this way. In [27] it was assumed that PBHs are massive stellar halo objects (MACHO) with monochromatic mass function equal to , PBHs are initially randomly distributed in space and . After the LIGO discovery, this theory was rewritten for PBHs with mass [21] and (2) was treated as a free parameter. It was derived that, in order to get a merging rate compatible with LIGO’s estimates, is required to be of order . Intriguingly, it appears close to the PBH abundance estimated from the lack of CMB spectral distortion. More GWs data is needed to test this model.
2.2. Astrophysical Black Holes
3. Gravitational Waves from the Mirror World
3.1. Mirror World
3.2. BBH Merger Rate in M-World
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BBH | Binary Black Hole |
BBN | Big Bang Nucleosynthesis |
BH | Black Hole |
CDM | Cold Dark Matter |
CMB | Cosmic Microwave Background |
DM | Dark Matter |
GUT | Grand Unification Theory |
GW | Gravitational Waves |
LIGO | The Laser Interferometer Gravitational-Wave Observatory |
MRD | Matter-Radiation Decoupling |
M-World | Mirror World |
O-World | Ordinary World |
PBH | Primordial Black Hole |
SFR | Star Formation Rate |
References
- Abbott, B.P.; et al.; [LIGO Scientific and Virgo Collaborations] Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; et al.; [LIGO Scientific and Virgo Collaborations] GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; et al.; [LIGO Scientific and Virgo Collaborations] Binary Black Hole Mergers in the first Advanced LIGO Observing Run. Phys. Rev. X 2016, 6, 041015, Erratum in Phys. Rev. X 2018, 8, 03990. [Google Scholar] [CrossRef]
- Abbott, B.P.; et al.; [LIGO Scientific and VIRGO Collaborations] GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101, Erratum in Phys. Rev. Lett. 2018, 121, 129901. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; et al.; [LIGO Scientific and Virgo Collaborations] GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence. Astrophys. J. 2017, 851, L35. [Google Scholar] [CrossRef]
- Abbott, B.P.; et al.; [LIGO Scientific and Virgo Collaborations] GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; et al.; [LIGO Scientific and Virgo Collaborations] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; et al.; [LIGO Scientific and Virgo Collaborations] GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. High Energy Astrophys. Phenom. 2018, arXiv:1811.12907. [Google Scholar]
- Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.; Poolakkil, S.; Roberts, O.J.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophys. J. 2017, 848, L14. [Google Scholar] [CrossRef]
- Burns, E.; et al.; [LIGO Scientific and Virgo Collaborations and Fermi Gamma-ray Burst Monitor Team] A Fermi Gamma-ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational- Wave Candidates in Advanced LIGO’s First Observing Run. High Energy Astrophys. Phenom. 2018, arXiv:1810.02764. [Google Scholar] [CrossRef]
- Racusin, J.L.; et al.; [Fermi-LAT Collaboration] Searching the Gamma-ray sky for Counterparts to Gravitational Wave Sources: Fermi Gamma-ray Burst Monitor and Large Area Telescope Observations of LVT151012 and GW151226. Astrophys. J. 2017, 835, 82. [Google Scholar] [CrossRef]
- Blinnikov, S.I.; Khlopov, M.Y. On Possible Effects Of ’Mirror’ Particles. Sov. J. Nucl. Phys. 1982, 36, 472, translated from Yad. Fiz. 1982, 36, 809. [Google Scholar]
- Blinnikov, S.I.; Khlopov, M. Possible Astronomical Effects of Mirror Particles. Sov. Astron. 1983, 27, 371, translated from Astron. Zh. 1983, 60, 632. [Google Scholar]
- Abbott, B.P.; et al.; [LIGO Scientific and Virgo Collaborations] Astrophysical Implications of the Binary Black-Hole Merger GW150914. Astrophys. J. 2016, 818, L22. [Google Scholar] [CrossRef]
- Heger, A.; Fryer, C.L.; Woosley, S.E.; Langer, N.; Hartmann, D.H. How Massive Single Stars end Their Life. Astrophys. J. 2003, 591, 288–300. [Google Scholar] [CrossRef]
- Abbott, B.P.; et al.; [LIGO Scientific and Virgo Collaborations] Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. High Energy Astrophys. Phenom. 2018, arXiv:1811.12940. [Google Scholar]
- Giacobbo, N.; Mapelli, M. The Progenitors of Compact-object Binaries: Impact of Metallicity, Common Envelope and Natal Kicks. Mon. Not. R. Astron. Soc. 2018, 480, 2011. [Google Scholar] [CrossRef]
- Mandel, I.; de Mink, S.E. Merging Binary Black Holes Formed Through Chemically Homogeneous Evolution in Short-period Stellar Binaries. Mon. Not. R. Astron. Soc. 2016, 458, 2634. [Google Scholar] [CrossRef]
- Askar, A.; Szkudlarek, M.; Gondek-Rosińska, D.; Giersz, M.; Bulik, T. MOCCA-SURVEY Database—I. Coalescing Binary Black Holes Originating From Globular Clusters. Mon. Not. R. Astron. Soc. 2017, 464, L36. [Google Scholar] [CrossRef]
- Bird, S.; Cholis, I.; Muñoz, J.B.; Ali-Haïmoud, Y.; Kamionkowski, M.; Kovetz, E.D.; Raccanelli, A.; Riess, A.G. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 2016, 116, 201301. [Google Scholar] [CrossRef]
- Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 2016, 117, 061101, Erratum in Phys. Rev. Lett. 2018, 121, 059901. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial Black Holes—Perspectives in Gravitational Wave Astronomy. Class. Quant. Grav. 2018, 35, 063001. [Google Scholar] [CrossRef]
- Allsman, R.A.; et al.; [Macho Collaboration] MACHO Project Limits on Black Hole Dark Matter in the 1–30 Solar Mass Range. Astrophys. J. 2001, 550, L169. [Google Scholar] [CrossRef]
- Tisserand, P.; et al.; [EROS-2 Collaboration] Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. Astron. Astrophys. 2007, 469, 387–404. [Google Scholar] [CrossRef]
- Yoo, J.; Chaname, J.; Gould, A. The end of the MACHO Era: Limits on Halo Dark Matter from Stellar Halo Wide Binaries. Astrophys. J. 2004, 601, 311–318. [Google Scholar] [CrossRef]
- Ricotti, M.; Ostriker, J.P.; Mack, K.J. Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates. Astrophys. J. 2008, 680, 829. [Google Scholar] [CrossRef]
- Nakamura, T.; Sasaki, M.; Tanaka, T.; Thorne, K.S. Gravitational Waves from Coalescing Black Hole MACHO Binaries. Astrophys. J. 1997, 487, L139. [Google Scholar] [CrossRef]
- Elbert, O.D.; Bullock, J.S.; Kaplinghat, M. Counting Black Holes: The Cosmic Stellar Remnant Population and Implications for LIGO. Mon. Not. Roy. Astron. Soc. 2018, 473, 1186. [Google Scholar] [CrossRef]
- Sana, H.; de Mink, S.E.; de Koter, A.; Langer, N.; Evans, C.J.; Gieles, M.; Gosset, E.; Izzard, R.G.; le Bouquin, J.; Schneider, B.F.R.N. Binary Interaction Dominates the Evolution of Massive Stars. Science 2012, 337, 444. [Google Scholar] [CrossRef] [PubMed]
- Madau, P.; Dickinson, M. Cosmic Star Formation History. Ann. Rev. Astron. Astrophys. 2014, 52, 415. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Beskin, G.M.; Bochkarev, N.E.; Pustylnik, L.A.; Pustylnik, S.A. Observational Physics of Mirror World. Sov. Astron. 1991, 35, 21, translated from Astron. Zh. 1991, 68, 42. [Google Scholar]
- Berezhiani, Z. Through the Looking-glass: Alice’s Adventures in Mirror World. In From Fields to Strings; Shifman, M., et al., Eds.; World Scientific: Singapore, 2005; Volume 3, pp. 2147–2195. [Google Scholar] [CrossRef]
- Kolb, E.W.; Seckel, D.; Turner, M.S. The Shadow World. Nature 1985, 314, 415. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Shibaev, K.I. New physics from superstring phenomenology. Grav. Cosmol. Suppl. 2002, 8, 45. [Google Scholar]
- Lisi, E.; Sarkar, S.; Villante, F.L. The Big Bang Nucleosynthesis Limit on N(Neutrino). Phys. Rev. D 1999, 59, 123520. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Comelli, D.; Villante, F.L. The Early Mirror Universe: Inflation, Baryogenesis, Nucleosynthesis and Dark Matter. Phys. Lett. B 2001, 503, 362. [Google Scholar] [CrossRef]
- Berezhiani, Z.G.; Dolgov, A.D.; Mohapatra, R.N. Asymmetric Inflationary Reheating and the Nature of Mirror Universe. Phys. Lett. B 1996, 375, 26. [Google Scholar] [CrossRef]
- Bento, L.; Berezhiani, Z. Leptogenesis via Collisions: The Lepton Number Leaking to the Hidden Sector. Phys. Rev. Lett. 2001, 87, 231304. [Google Scholar] [CrossRef] [PubMed]
- Berezhiani, Z. Mirror World and its Cosmological Consequences. Int. J. Mod. Phys. A 2004, 19, 3775. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Cassisi, S.; Ciarcelluti, P.; Pietrinferni, A. Evolutionary and Structural Properties of Mirror Star MACHOs. Astropart. Phys. 2006, 24, 495. [Google Scholar] [CrossRef]
# | Gravitational Wave | Redshift | ||
---|---|---|---|---|
1 | GW150914 | |||
2 | GW151012 | |||
3 | GW151226 | |||
4 | GW170104 | |||
5 | GW170608 | |||
6 | GW170729 | |||
7 | GW170809 | |||
8 | GW170814 | |||
9 | GW170818 | |||
10 | GW170823 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beradze, R.; Gogberashvili, M. Gravitational Waves from Mirror World. Physics 2019, 1, 67-75. https://doi.org/10.3390/physics1010007
Beradze R, Gogberashvili M. Gravitational Waves from Mirror World. Physics. 2019; 1(1):67-75. https://doi.org/10.3390/physics1010007
Chicago/Turabian StyleBeradze, Revaz, and Merab Gogberashvili. 2019. "Gravitational Waves from Mirror World" Physics 1, no. 1: 67-75. https://doi.org/10.3390/physics1010007
APA StyleBeradze, R., & Gogberashvili, M. (2019). Gravitational Waves from Mirror World. Physics, 1(1), 67-75. https://doi.org/10.3390/physics1010007