# Natural Convection in Porous Media and the Collapse of the Wave Function

## Abstract

**:**

## 1. Introduction

## 2. Quantum Mechanics and the Collapse of the Wave Function

## 3. Natural Convection in Porous Media—Problem Formulation

## 4. Natural Convection in Porous Media—Linear Stability

## 5. Rendering Schrödinger Equation from Quantum Mechanics into Euler Equation in Fluid Dynamics

## 6. Conclusions

## Funding

## Conflicts of Interest

## References

- Bohm, D. Quantum Theory; Dover Publications: Mineola, NY, USA, 1951. [Google Scholar]
- Griffiths, D.J. Introduction to Quantum Mechanics, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Bowman, G.E. Essential Quantum Mechanics; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Schrödinger, E. Quantisierung als Eigenwertproblem (Teil I). Ann. Phys.
**1926**, 79, 361–376. [Google Scholar] [CrossRef] - Schrödinger, E. Quantisierung als Eigenwertproblem (Teil II). Ann. Phys.
**1926**, 79, 489–527. [Google Scholar] [CrossRef] - Schrödinger, E. Der stetige Übergang von der Mikrozur Makromechanik. Die Naturwissenschaften
**1926**, 14, 664–666. [Google Scholar] [CrossRef] - Schrödinger, E. Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen. Ann. Phys.
**1926**, 79, 734–756. [Google Scholar] [CrossRef] - Schrödinger, E. Quantisierung als Eigenwertproblem (Teil III). Ann. Phys.
**1926**, 80, 437–490. [Google Scholar] [CrossRef] - Schrödinger, E. Quantisierung als Eigenwertproblem (Teil IV). Ann. Phys.
**1926**, 81, 109–139. [Google Scholar] [CrossRef] - Born, M. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik A Hadrons Nuclei
**1926**, 37, 863–867. [Google Scholar] - Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.
**1935**, 47, 777–780. [Google Scholar] [CrossRef] - Einstein, A. Zur Theorie der Brownschen Bewegung. Annalen der Physik
**1906**, 19, 371–381. [Google Scholar] [CrossRef] - Einstein, A. On the theory of the Brownian movement. In Albert Einstein: Investigations on the Theory of Brownian Movement; Dover Publications: Mineola, NY, USA, 1956; pp. 19–35. [Google Scholar]
- Bohr, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.
**1935**, 48, 696–702. [Google Scholar] [CrossRef] - Hooft, G.T. Equivalence relations between deterministic and quantum mechanical systems. J. Stat. Phys.
**1988**, 53, 323–344. [Google Scholar] [CrossRef] [Green Version] - Hooft, G.T. A mathematical theory for deterministic quantum mechanics. J. Phys. Conf. Ser.
**2007**, 67, 012015/1–012015/15. [Google Scholar] [CrossRef] - Hooft, G.T. How a wave function can collapse without violating Schrödinger’s equation, and how to understand Born’s rule. arXiv, 2012; arXiv:1112.1811v3. [Google Scholar]
- Nield, D.A.; Bejan, A. Convection in Porous Media, 4th ed.; Springer Verlag: New York, NY, USA, 2013. [Google Scholar]
- Vadasz, P.; Braester, C. The effect of imperfectly insulated sidewalls on natural convection in porous media. Acta Mech.
**1992**, 91, 215–233. [Google Scholar] [CrossRef] - Braester, C.; Vadasz, P. The effect of a weak heterogeneity of the porous medium on the natural convection. J. Fluid Mech.
**1993**, 254, 345–362. [Google Scholar] [CrossRef] - Vadasz, P.; Braester, C.; Bear, J. The effect of perfectly conducting lateral boundaries on natural convection in porous media. Int. J. Heat Mass Transf.
**1993**, 36, 1159–1170. [Google Scholar] [CrossRef] - Madelung, E. Quantentheorie in hydrodynamischer form. Zeitschrift fur Physik
**1926**, 40, 322–326. [Google Scholar] [CrossRef] - Vadasz, P. Rendering the Navier-Stokes equations for a compressible fluid into the Schrödinger equation for quantum mechanics. Fluids
**2016**, 1, 18. [Google Scholar] [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vadasz, P.
Natural Convection in Porous Media and the Collapse of the Wave Function. *Physics* **2019**, *1*, 76-83.
https://doi.org/10.3390/physics1010008

**AMA Style**

Vadasz P.
Natural Convection in Porous Media and the Collapse of the Wave Function. *Physics*. 2019; 1(1):76-83.
https://doi.org/10.3390/physics1010008

**Chicago/Turabian Style**

Vadasz, Peter.
2019. "Natural Convection in Porous Media and the Collapse of the Wave Function" *Physics* 1, no. 1: 76-83.
https://doi.org/10.3390/physics1010008