Obtaining Nanolignin from Green Coconut Shell and Fiber by the Acetosolv Method with Subsequent Ultrasonication
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Lignin Extraction by Acetosolv Pulping
2.3. Lignin Characterization
2.4. Process of Obtaining Nanolignin
2.5. Dynamic Light Scattering (DLS)
3. Results and Discussion
3.1. Yield and Characterization of Acetosolv Lignin
3.2. Thermogravimetric Analysis (TG) of Lignin
3.3. Fourier-Transform Infrared (FTIR) Analysis of Lignin
3.4. Scanning Electron Microscopy (SEM) of Lignin
3.5. Dynamic Light Scattering (DLS) of Nanolignin
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsegaye, B.; Ström, A.; Hedenqvist, M.S. Thermoplastic lignocellulose materials: A review on recent advancement and utilities. Carbohydr. Polym. Technol. Appl. 2023, 5, 100319. [Google Scholar] [CrossRef]
- Tripathi, M.; Srivastava, N.; Tripathi, S.C.; Singh, R.; Ahmad, I.; Rai, A.K.; Razik, N.E.A.; Mishra, P.K.; Gupta, V.K. Co-fermentation of acid treated coconut wastes using mixed Bacillus cultures for enhanced production of extracellular enzymes: Application in bioconversion of raw coconut fibers. Food Bioprod. Process. 2024, 146, 177–184. [Google Scholar] [CrossRef]
- Rocha, K.D.C.; Ferreira, M.S.; Garcia, C.E.R. Produção e produtos à base de coco (Cocos nucifera L.): A review. Braz. J. Dev. 2022, 8, 41476–41491. [Google Scholar] [CrossRef]
- Pereira Junior, A.O. Aproveitamento energético de resíduos: Um mercado que não se pode descartar. Instituto de Pesquisa Econômica Aplicada (Ipea). Bol. Reg. Urbano Ambient. 2020, 24, 159–161. [Google Scholar]
- Queiroz, L.P.O.; Albuquerque, F.B.; de Souza, J.C.R. Análise bibliométrica sobre a utilização de resíduos do coco (Cocos nucifera L.) em aplicações para biocombustíveis. Rev. Iberoam. Cienc. Ambient. 2021, 12, 9. [Google Scholar] [CrossRef]
- Singh, P.; Dubey, P.; Younis, K.; Yousuf, O. A review on the valorization of coconut shell waste. Biomass Convers. Biorefinery 2022, 14, 8115–8125. [Google Scholar] [CrossRef]
- Hu, H.; Tan, W.; Xi, B. Lignin-phenol monomers govern the pyrolytic conversion of natural biomass from lignocellulose to products. Environ. Sci. Ecotechnol. 2021, 8, 100131. [Google Scholar] [CrossRef]
- Patel, R.; Dhar, P.; Babaei-Ghazvini, A.; Dafchahi, M.N.; Acharya, B. Transforming lignin into renewable fuels, chemicals, and materials: A review. Bioresour. Technol. Rep. 2023, 22, 101463. [Google Scholar] [CrossRef]
- Dessie, W.; Luo, X.; He, F.; Liao, Y.; Duns, G.J.; Qin, Z. Lignin valorization: A crucial step towards full utilization of biomass, zero waste and circular bioeconomy. Biocatal. Agric. Biotechnol. 2013, 51, 102777. [Google Scholar] [CrossRef]
- Razali, N.; Ong, P.; Ibrahim, M.; Daud, W.R.W.; Zainuddin, Z. Modeling of acetosolv pulping of oil palm fronds using response surface methodology and wavelet neural networks. Cellulose 2019, 26, 4615–4628. [Google Scholar] [CrossRef]
- Rodrigues, J.S.; Carmo, K.P.; Freitas, R.R.M.; Silva, J.O.; Lima, V.; Botaro, V.R. Isolamento e caracterização de lignina acetossolve extraída do bagaço de cana-de-açúcar. Rev. Virtual Quím. 2020, 12, 4. [Google Scholar]
- Lizundia, E.; Sipponen, M.H.; Greca, L.G.; Balakshin, M.; Tardy, B.L.; Rojas, O.L.; Puglia, D. Multifunctional lignin-based nanocomposites and nanohybrids. Green Chem. 2021, 23, 6698–6760. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.S. Lignin nanoparticles: Eco-friendlyand versatile tool for a new era. Bioresour. Technol. Rep. 2020, 9, 100374. [Google Scholar] [CrossRef]
- Ortega-Sanhueza, I.; Girard, V.; Ziegler-Devin, I.; Chapuis, H.; Brosse, N.; Valenzuela, F.; Banerjee, A.; Fuentealba, C.; Cabrera-Barjas, G.; Torres, C.; et al. Preparation and Characterization of Lignin Nanoparticles from Different Plant Sources. Polymers 2024, 16, 1610. [Google Scholar] [CrossRef] [PubMed]
- Savy, D.; Verrillo, M.; Cangemi, S.; Cozzolino, V. Lignin nanoparticles from hydrotropic fractionation of giant reed and eucalypt: Structural elucidation and antibacterial properties. Int. J. Biol. Macromol. 2024, 262, 129966. [Google Scholar] [CrossRef]
- Hussin, M.H.; Appaturi, J.N.; Poh, N.E.; Latif, N.H.A.; Brosse, N.; Ziegler-Devin, I.; Vahabi, H.; Syamani, F.A.; Fatriasari, W.; Solihat, N.N.; et al. A recent advancement on preparation, characterization and application of nanolignin. J. Int. J. Biol. Macromol. 2022, 200, 303–326. [Google Scholar] [CrossRef]
- Kim, I.T.; Sinha, T.K.; Lee, J.; Lee, Y.; Oh, J.S. Ultrasonic treatment: An acid-free green approach toward preparing high-performance activated carbon from lignin. Ind. Eng. Chem. Res. 2021, 60, 2439–2446. [Google Scholar] [CrossRef]
- Gouveia, E.R.; Nascimento, R.T.; Souto-Maior, A.M.; Rocha, G.J.d.M. Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quím. Nova 2009, 32, 1500–1503. [Google Scholar] [CrossRef]
- T 203 cm-99; Alpha-, Beta- and Gamma-Cellulose in Pulp. Tappi: Atlanta, GA, USA, 2009; 7p.
- Chen, Y.W.; Lee, H.V.; Juan, J.C.; Phang, S.M. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr. Polym. 2016, 151, 1210–1219. [Google Scholar] [CrossRef]
- Hojo, O.; Ernesto, V.A.R.T.; Ribeiro, C.A.; Fiscarelli, P.; Fertonani, F.L. Comparação metodológica entre mufla convencional e automática para análise de umidade e cinzas em bagaço de cana. In Anais do Congresso da Qualidade em Metrologia; REMESP: São Paulo, Brazil, 2008; pp. 1–6. [Google Scholar]
- T412 om-11; Moisture in Pulp, Paper and Paperboard. Tappi: Atlanta, GA, USA, 2011; 3p.
- Benar, P. Polpação Acetosolv de Bagaço de Cana e Madeira de Eucalipto. Master’s Dissertation, Instituto de Química, Universidade Estadual de Campinas, São Paulo, Brazil, 1992. [Google Scholar]
- Nascimento, D.M.D.; Almeida, J.S.; Do Vale, M.S.; Leitão, R.C.; Muniz, C.R.; Figueirêdo, M.C.B.D.; Morais, J.P.S.; Rosa, M.F. A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: Proposition of technological pathways. Ind. Crops Prod. 2016, 93, 66–67. [Google Scholar] [CrossRef]
- Nogueira, I.M. Obtenção de nanolignina de resíduos fibrosos do dendê. Master’s Dissertation, Universidade Federal do Ceará, Fortaleza, Brazil, 2016. [Google Scholar]
- Marques, F.P.; Soares, A.K.L.; Lomonaco, D.; Alexandre e Silva, L.M.; Santaella, S.T.; de Freitas Rosa, M.; Leitão, R.C. Steam Explosion Pretreatment Improves Acetic Acid Organosolv Delignification of Oil Palm Mesocarp Fibers and Sugarcane Bagasse. Int. J. Biol. Macromol. 2021, 175, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Rani, B.S.J.; Venkatachalam, S. Cleaner approach for the cascade production of nanocellulose, nanohemicellulose and nanolignin from Prosopis juliflora. Carbohydr. Polym. 2022, 11, 119807. [Google Scholar] [CrossRef] [PubMed]
- Verçosa, F.G.; Filho, M.S.; Pereira, V.A.; Azeredo, H.M.C. Extração de Lignina do Tegumento de Mangas; Embrapa—Comunicado técnico; Embrapa: Brasília, Brazil, 2019; Volume 259. [Google Scholar]
- Marques, F.P.; Colares, A.S.; Cavalcante, M.N.; Almeida, J.S.; Lomonaco, D.; Silva, L.M.A.; Rosa, M.F.; Leitao, R.C. Optimization by Response Surface Methodology of Ethanosolv Lignin Recovery from Coconut Fiber, Oil Palm Mesocarp Fiber, and Sugarcane Bagasse. Ind. Eng. Chem. Res. 2022, 61, 4058–4067. [Google Scholar] [CrossRef]
- Gaudenzi, E.; Cardone, F.; Lu, X.; Canestrari, F. The use of lignin for sustainable asphalt pavements: A literature review. Constr. Build. Mater. 2023, 362, 129773. [Google Scholar] [CrossRef]
- Olgun, Ç.; Ateş, S. Characterization and Comparison of Some Kraft Lignins Isolated from Different Sources. Forests 2023, 14, 882. [Google Scholar] [CrossRef]
- Duarte, L.C.; Sampaio, B.; Carvalheiro, F. Organosolv Pretreatment of Lignocellulosic Biomass. In Handbook of Biorefinery Research and Technology; Bisaria, V., Ed.; Springer: Dordrecht, The Netherlands, 2024. [Google Scholar]
- Wang, Q.; Sarkar, J. Pyrolysis behaviors of waste coconut shell and husk biomasses. Int. J. Energy Prod. Manag. 2018, 3, 34–43. [Google Scholar] [CrossRef]
- Freitas, B.R.; Braga, J.O.; Orlandi, M.P.; Silva, B.P.; Aoki, I.V.; Lins, V.F.C.; Cotting, F. Characterization of coir fiber powder (Cocos nucifera L.) as an environmentally friendly inhibitor pigment for organic coatings. J. Mater. Res. Technol. 2022, 19, 1332–1342. [Google Scholar] [CrossRef]
- Zakaria, S.M.; Idris, A.; Alias, Y. Lignin extraction from coconut shell using aprotic ionic liquids. BioResources 2017, 12, 5749–5774. [Google Scholar] [CrossRef]
- Chin, D.W.K.; Lim, S.; Pang, Y.L.; Lam, M.K. Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing. Biofuels Bioprod. Biorefin. 2020, 14, 808–829. [Google Scholar] [CrossRef]
- Ramezani, N.; Sain, M. Thermal and physiochemical characterization of lignin extracted from wheat straw by organosolv process. J. Polym. Environ. 2018, 26, 3109–3116. [Google Scholar] [CrossRef]
- Thoresen, P.P.; Matsakas, L.; Rova, U.; Christakopoulos, P. Recent advances in organosolv fractionation: Towards biomass fractionation technology of the future. Bioresour. Technol. 2020, 306, 123189. [Google Scholar] [CrossRef] [PubMed]
- Abd Latif, N.; Brosse, N.; Ziegler-Devin, I.; Chrusiel, L.; Hashim, R.; Hussin, M. A comparison of alkaline and organosolv lignin extraction methods from coconut husks as an alternative material for green applications. BioResources 2022, 17, 469–491. [Google Scholar] [CrossRef]
- Juikar, S.J.; Vigneswaran, N. Extraction of nanolignin from coconut fibers by controlled microbial hydrolysis. Ind. Crops Prod. 2017, 109, 420–425. [Google Scholar] [CrossRef]
- Hernández, J.M.G.; Escalante, A.; Vázquez, R.N.M.; Delgado, E.; González, F.J.; Toríz, G. Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection. J. Photochem. Photobiol. B Biol. 2016, 163, 156–161. [Google Scholar] [CrossRef]
- Jose, S.; Mishra, L.; Basu, G.; Kumarsamanta, A. Study on Reuse of Coconut Fiber Chemical Retting Bath. Parte II—Recovery and Characterization of Lignin. J. Natural Fibers 2017, 14, 510–518. [Google Scholar]
- Pandharipande, S.L.; Gujrati, M.; Mulkutkar, N.; Pandey, S. Comparative Study of Extraction & Characterization of Lignin from Wet and Dry Coconut Husk. Int. J. Eng. Sci. Res. Technol. 2018, 7, 659–666. [Google Scholar] [CrossRef]
- Pinheiro, F.G.C.; Soares, A.K.L.; Santaella, S.T.; Silva, L.M.A.; Canuto, K.M.; Cáceres, C.A.; Rosa, M.F.; Feitosa, J.P.A.; Leitão, R.C. Optimization of the acetosolv extraction of lignin from sugarcane bagasse for phenolic resin production. Ind. Crops Prod. 2017, 96, 80–90. [Google Scholar] [CrossRef]
- Meng, X.; Yunxuan, W.; Austin, J.C.; Shuyang, Z.; Jiae, R.J.J.W.; Yunqiao, P.; Brian, H.D.; Chang, G.Y.; Arthur, J.R. Applications of biomass-derived solvents in biomass pretreatment—Strategies, challenges, and prospects. Bioresour. Technol. 2023, 368, 128280. [Google Scholar] [CrossRef]
- Soh, L.; Eckelman, M.J. Green solvents in biomass processing. ACS Sustain. Chem. Eng. 2016, 4, 5821–5837. [Google Scholar] [CrossRef]
- Aguiar, D.S.; Silva, B.A.M.; Gonçalves, R.D.; Pereira, A.C.C.; Mota, I.O.; Bandeira, C.F.; Rosa, J.L.; Montoro, S.R. Verificação do potencial da biomassa proveniente da fibra de coco como possível reforço em compósitos poliméricos via caracterização morfológica por MEV após tratamento alcalino na presença de NaBH4. In Proceedings of the Congresso Brasileiro de Ciências e Saberes Multidisciplinares, Volta Redonda, Brazil, 26–28 October 2023. No. 2. [Google Scholar]
- Matsakas, L.; Nitsos, C.; Raghavendran, V.; Yakimenko, O.; Persson, G.; Olsson, E.; Rova, U.; Olsson, L.; Christakopoulos, P. A novel hybrid organosolv: Steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnol. Biofuels 2018, 11, 160. [Google Scholar] [CrossRef]
Biomass Applied | Temperature (°C) | Acetosolv Yield (%) | Ash (%) | Klason Lignin (%) |
---|---|---|---|---|
FCIN | 100 | 13.89 ± 4.35 | 0.55 ± 0.26 | 78.82 ± 0.81 |
FCIN | 120 | 11.39 ± 0.69 | 0.58 ± 0.27 | 80.93 ± 0.25 |
FCSE | 100 | 14.09 ± 1.08 | 0.45 ± 0.26 | 78.20 ± 0.75 |
FCSE | 120 | 16.07 ± 1.07 | 0.50 ± 0.28 | 80.94 ± 5.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lôbo, L.N.; de Lima Araújo, R.R.; de Andrade, F.P.; Rosas Garcia Almeida, R.M.; de Farias Silva, C.E.; de Freitas, J.M.D.; Duarte de Freitas, J.; da Silva, M.B.; Barcellos França, P.H. Obtaining Nanolignin from Green Coconut Shell and Fiber by the Acetosolv Method with Subsequent Ultrasonication. Reactions 2025, 6, 7. https://doi.org/10.3390/reactions6010007
Lôbo LN, de Lima Araújo RR, de Andrade FP, Rosas Garcia Almeida RM, de Farias Silva CE, de Freitas JMD, Duarte de Freitas J, da Silva MB, Barcellos França PH. Obtaining Nanolignin from Green Coconut Shell and Fiber by the Acetosolv Method with Subsequent Ultrasonication. Reactions. 2025; 6(1):7. https://doi.org/10.3390/reactions6010007
Chicago/Turabian StyleLôbo, Larissa Nascimento, Rosana Reis de Lima Araújo, Francine Pimentel de Andrade, Renata Maria Rosas Garcia Almeida, Carlos Eduardo de Farias Silva, Jennifer Mclaine Duarte de Freitas, Johnnatan Duarte de Freitas, Mariana Barboza da Silva, and Pedro Henrique Barcellos França. 2025. "Obtaining Nanolignin from Green Coconut Shell and Fiber by the Acetosolv Method with Subsequent Ultrasonication" Reactions 6, no. 1: 7. https://doi.org/10.3390/reactions6010007
APA StyleLôbo, L. N., de Lima Araújo, R. R., de Andrade, F. P., Rosas Garcia Almeida, R. M., de Farias Silva, C. E., de Freitas, J. M. D., Duarte de Freitas, J., da Silva, M. B., & Barcellos França, P. H. (2025). Obtaining Nanolignin from Green Coconut Shell and Fiber by the Acetosolv Method with Subsequent Ultrasonication. Reactions, 6(1), 7. https://doi.org/10.3390/reactions6010007